Patents Assigned to Applied Materials
-
Patent number: 7368394Abstract: Methods for forming anisotropic features for high aspect ratio application in etch process are provided in the present invention. The methods described herein advantageously facilitates profile and dimension control of features with high aspect ratios through a sidewall passivation management scheme. In one embodiment, sidewall passivations are managed by selectively forming an oxidation passivation layer on the sidewall and/or bottom of etched layers. In another embodiment, sidewall passivation is managed by periodically clearing the overburden redeposition layer to preserve an even and uniform passivation layer thereon. The even and uniform passivation allows the features with high aspect ratios to be incrementally etched in a manner that pertains a desired depth and vertical profile of critical dimension in both high and low feature density regions on the substrate without generating defects and/or overetching the underneath layers.Type: GrantFiled: February 27, 2006Date of Patent: May 6, 2008Assignee: Applied Materials, Inc.Inventors: Meihua Shen, Uwe Leucke, Guangxiang Jin, Xikun Wang, Wei Liu, Scott Williams
-
Publication number: 20080100917Abstract: A method and system are presented for use in imaging broadband light. A plurality of substantially narrowband light components of the broadband light are passed through an array of spectral imaging modules. Each of the spectral imaging modules is configured for imaging light of a respective substantially narrow spectral band with minimal aberrations. This technique provides for producing an image with minimal aberrations over the entire spectral range of the broadband light.Type: ApplicationFiled: October 30, 2006Publication date: May 1, 2008Applicant: Applied Materials, Israel, Ltd.Inventors: BORIS GOLBERG, Benjamin Cohen
-
Publication number: 20080102553Abstract: A process for passivating a carbon-based hard mask, for example, of hydrogenated amorphous carbon, overlying an oxide dielectric which is to be later etched according to the pattern of the hard mask. After the hard mask is photo lithographically etched, it is exposed to a plasma of a hydrogen-containing reducing gas, preferably hydrogen gas, and a fluorocarbon gas, preferably trifluoromethane. The substrate can then be exposed to air without the moisture condensing in the etched apertures of the hard mask.Type: ApplicationFiled: October 31, 2006Publication date: May 1, 2008Applicant: Applied Materials, Inc.Inventors: TAEHO SHIN, Ajey M. Joshi, Zhuang Li, Wei-Te Wu, Jin Chul Son, Jong Hun Choi
-
Publication number: 20080099145Abstract: Stress within a suspension wall for suspending a showerhead in a process chamber is ameliorated by one or more of: (1) A gas sealing skirt that helps protect the suspension wall from direct contact with process gas. The gas sealing skirt is connected to either the chamber wall or the showerhead but is not connected to both. (2) Openings in the suspension wall that reduce exposure of the suspension wall to process gas or ambient atmosphere when the chamber lid is opened. (3) A substantially vertical arrangement of one or more rifts in the suspension wall which facilitate horizontal buckling or flexing of the suspension wall. (4) A plurality of suspension walls whose respective central portions are coplanar.Type: ApplicationFiled: October 25, 2006Publication date: May 1, 2008Applicant: Applied Materials, Inc.Inventor: ERNST KELLER
-
Publication number: 20080100830Abstract: A system and method for inspecting an object. The system includes: a traveling lens acousto-optic device adapted to generate a traveling lens that propagates through an active region of the traveling lens acousto-optic device; a first scanner, adapted to direct a beam of light towards the traveling lens while the traveling lens propagates; a first beam splitter, adapted to receive a beam formed by the traveling lens; and to split the scanned beam to multiple illuminating light beams; multiple detectors; and an objective lens; adapted to receive the multiple illuminating light beams, direct the multiple illuminating light beams towards multiple areas of the object, receive multiple collected light beams from the multiple areas of the object, and direct the multiple collected light beams towards the multiple detectors; wherein each detector is associated with an area of the multiple areas.Type: ApplicationFiled: October 30, 2006Publication date: May 1, 2008Applicant: Applied Materials, Israel, Ltd.Inventors: Alexander Veis, Yoram Saban
-
Publication number: 20080102218Abstract: Methods for depositing a silicon-containing film are described. The methods may include delivering a silicon compound to a surface or a substrate, and reacting the silicon compound to grow the silicon-containing film. The silicon compound may be one or more compounds having a formula selected from the group Si4X8, Si4X10, Si5X10, and Si5X12, where X is independently a hydrogen or halogen.Type: ApplicationFiled: January 3, 2008Publication date: May 1, 2008Applicant: Applied Materials, Inc.Inventors: Paul Comita, Lance Scudder, David Carlson
-
Publication number: 20080099690Abstract: A microscope for inspecting a surface in an evacuated volume, including an optical objective assembly which is located in the evacuated volume in proximity to the surface. The assembly is arranged to collect and convey radiation from the surface while focusing the radiation so as to form an image of the surface. The microscope further includes a sensor, located in a space outside the evacuated volume, which is arranged to receive the radiation conveyed from the optical objective assembly so as to generate a signal corresponding to the image.Type: ApplicationFiled: October 30, 2006Publication date: May 1, 2008Applicant: Applied Materials, Israel, Ltd.Inventor: Idan Paiss
-
Publication number: 20080099329Abstract: A dual magnetron for plasma sputtering including a source magnetron and an auxiliary magnetron, each of which rotate about the center of the target at respective radii. The positions of the magnetron can be moved in complementary radial directions between sputter deposition and target cleaning. The magnetrons have different characteristics of size, strength, and imbalance. The source magnetron is smaller, stronger, and unbalanced source magnetron and is positioned near the edge of the wafer in sputter deposition and etching. The auxiliary magnetron is larger, weak, and more balanced and used for cleaning the center of the target and guiding sputter ions from the source magnetron in sputter deposition. Each magnetron may have its plasma shorted out in its radially outer position.Type: ApplicationFiled: October 27, 2006Publication date: May 1, 2008Applicant: Applied Materials, Inc.Inventors: Cristopher M. Pavloff, Winsor Lam, Tza-Jing Gung, Hong S. Yang, Ilyoung Richard Hong
-
Publication number: 20080099146Abstract: Stress within a suspension wall for suspending a showerhead in a process chamber is ameliorated by one or more of: (1) Openings in the suspension wall that reduce exposure of the suspension wall to process gas or ambient atmosphere when the chamber lid is opened. (2) A substantially vertical arrangement of one or more rifts in the suspension wall which facilitate horizontal buckling or flexing of the suspension wall. (3) A plurality of suspension walls whose respective central portions are coplanar. (4) A gas sealing skirt that helps protect the suspension wall from direct contact with process gas. The gas sealing skirt is connected to either the chamber wall or the showerhead but is not connected to both.Type: ApplicationFiled: October 25, 2006Publication date: May 1, 2008Applicant: Applied Materials, Inc.Inventor: ERNST KELLER
-
Patent number: 7365529Abstract: A flexible semiconductor test structure that may be incorporated into a semiconductor device is provided. The test structure may include a plurality of test pads designed to physically stress conductive lines to which they are attached during thermal cycling. By utilizing test pads with different dimensions (lengths and/or widths), the effects of thermal stress generated by a plurality of conductive lines having corresponding different dimensions may be simulated.Type: GrantFiled: August 18, 2006Date of Patent: April 29, 2008Assignee: Applied Materials, Inc.Inventors: Naomi Yoshida, Toshiyuki Nagata
-
Patent number: 7364991Abstract: Methods are disclosed for fabricating a compound nitride semiconductor structure. An amorphous buffer layer that includes nitrogen and a group-III element is formed over a substrate disposed within a substrate processing chamber at a first temperature. The temperature within the chamber is increased to a second temperature at which the amorphous buffer layer coalesces into crystallites over the substrate. The substrate is exposed to a corrosive agent to destroy at least some of the crystallites. A crystalline nitride layer is formed over the substrate at a third temperature using the crystallites remaining after exposure to the corrosive agent as seed crystals. The third temperature is greater than the first temperature. The crystalline nitride layer also includes nitrogen and a group-III element.Type: GrantFiled: April 27, 2006Date of Patent: April 29, 2008Assignee: Applied Materials, Inc.Inventors: David Bour, Jacob Smith, Sandeep Nijhawan
-
Patent number: 7365836Abstract: An optical inspection system rapidly evaluates a substrate by illumination of an area of a substrate larger than a diffraction-limited spot using a coherent laser beam by breaking temporal or spatial coherence. Picosecond or femtosecond pulses from a modelocked laser source are split into a plurality of spatially separated beamlets that are temporally and/or frequency dispersed, and then focused onto a plurality of spots on the substrate. Adjacent spots, which can overlap by up to about 60-70 percent, are illuminated at different times, or at different frequencies, and do not produce mutually interfering coherence effects. Bright-field and dark-field detection schemes are used in various combinations in different embodiments of the system.Type: GrantFiled: December 22, 2005Date of Patent: April 29, 2008Assignee: Applied Materials, Israel, Ltd.Inventor: Daniel Some
-
Patent number: 7365320Abstract: Systems and methods for process monitoring based upon X-ray emission induced by a beam of charged particles such as electrons or ions include a system and method for process monitoring that analyze a cavity before being filled and then analyze emitted X-rays from the cavity after the cavity has been filled with a conductive material. Also included are system and methods for process monitoring that apply a quantitative analysis correction technique on detected X-ray emissions.Type: GrantFiled: October 8, 2003Date of Patent: April 29, 2008Assignee: Applied Materials Israel, Ltd.Inventor: Dror Shemesh
-
Patent number: 7364603Abstract: An apparatus and process for abating at least one acid or hydride gas component or by-product thereof, from an effluent stream deriving from a semiconductor manufacturing process, comprising, a first sorbent bed material having a high capacity sorbent affinity for the acid or hydride gas component, a second and discreet sorbent bed material having a high capture rate sorbent affinity for the same gas component, and a flow path joining the process in gas flow communication with the sorbent bed materials such that effluent is flowed through the sorbent beds, to reduce the acid or hydride gas component. The first sorbent bed material preferably comprises basic copper carbonate and the second sorbent bed preferably comprises at least one of, CuO, AgO, CoO, CO3O4, ZnO, MnO2 and mixtures thereof.Type: GrantFiled: August 27, 2004Date of Patent: April 29, 2008Assignee: Applied Materials, Inc.Inventors: Joseph D. Sweeney, Paul J. Marganski, W. Karl Olander
-
Patent number: 7365029Abstract: Embodiments of the invention generally provide a method for depositing a film containing silicon (Si) and nitrogen (N). In one embodiment, the method includes heating a substrate disposed in a processing chamber to a temperature less than about 650 degrees Celsius, flowing a nitrogen-containing gas into the processing chamber, flowing a silicon-containing gas into the processing chamber, and depositing a SiN-containing layer on a substrate. The silicon-containing gas is at least one of a gas identified as NR2—Si(R?2)—Si(R?2)—NR2 (amino(di)silanes), R3—Si—N?N?N (silyl azides), R?3—Si—NR—NR2 (silyl hydrazines) or 1,3,4,5,7,8-hexamethytetrasiliazane, wherein R and R? comprise at least one functional group selected from the group of a halogen, an organic group having one or more double bonds, an organic group having one or more triple bonds, an aliphatic alkyl group, a cyclical alkyl group, an aromatic group, an organosilicon group, an alkyamino group, or a cyclic group containing N or Si.Type: GrantFiled: June 14, 2005Date of Patent: April 29, 2008Assignee: Applied Materials, Inc.Inventors: R. Suryanarayanan Iyer, Sean M. Seutter, Sanjeev Tandon, Errol Antonio C. Sanchez, Shulin Wang
-
Patent number: 7365014Abstract: We have reduced the critical dimension bias for reticle fabrication. Pattern transfer to the radiation-blocking layer of the reticle substrate essentially depends upon use of a hard mask to which the pattern is transferred from a photoresist. The photoresist pull back which occurs during pattern transfer to the hard mask is minimalized. In addition, a hard mask material having anti-reflective properties which are matched to the reflective characteristics of the radiation-blocking layer enables a reduction in critical dimension size and an improvement in the pattern feature integrity in the hard mask itself. An anti-reflective hard mask layer left on the radiation-blocking layer provides functionality when the reticle is used in a semiconductor device manufacturing process.Type: GrantFiled: January 30, 2004Date of Patent: April 29, 2008Assignee: Applied Materials, Inc.Inventors: Christopher Dennis Bencher, Melvin Warren Montgomery, Alexander Buxbaum, Yung-Hee Yvette Lee, Jian Ding, Gilad Almogy, Wendy H. Yeh
-
Patent number: 7363876Abstract: A transformer-coupled plasma source using toroidal cores forms a plasma with a high-density of ions along the center axis of the torus. In one embodiment, cores of a plasma generator are stacked in a vertical alignment to enhance the directionality of the plasma and generation efficiency. In another embodiment, cores are arranged in a lateral array into a plasma generating plate that can be scaled to accommodate substrates of various sizes, including very large substrates. The symmetry of the plasma attained allows simultaneous processing of two substrates, one on either side of the plasma generator.Type: GrantFiled: January 30, 2004Date of Patent: April 29, 2008Assignee: Applied Materials, Inc.Inventors: Canfeng Lai, Michael S. Cox, Peter K. Loewenhardt, Tsutomu Tanaka, Shamouil Shamouilian
-
Patent number: 7364349Abstract: A dilution stage is adapted to supply a dilute chemistry to a semiconductor device processing apparatus. The dilution stage includes a first vessel adapted to store the chemistry after dilution and a second vessel adapted to store the chemistry prior to dilution. The dilution stage may also include a control mechanism which is adapted to selectively control flowing of the chemistry and a dilutant to the first vessel. The control mechanism may be operative to fill the second vessel with the chemistry, and to flow the dilutant to the first vessel via the second vessel.Type: GrantFiled: May 22, 2006Date of Patent: April 29, 2008Assignee: Applied Materials, Inc.Inventors: Younes Achkire, Julia Svirchevski, Jonathan S. Frankel, Kien-Bang Lam
-
Publication number: 20080096376Abstract: A method of reactively sputtering from a metallic zinc target a transparent conductive oxide electrode of zinc oxide from a metallic zine in a silicon photo diode device and the resultant product, such as a solar cell. The electrode in deposited on a transparent substrate in at least two steps. The oxygen partial pressure is reduced in the first step to produce an oxygen-deficient ZnO layer, which is highly conductive and has a textured surface, and is increased in the second step to produce a more stoichiometric ZnO, which has a refractive index more closely matched to the overlying silicon device. The second layer is substantially thinner than the first so the surface texture is transferred across it and the overall sheet resistance of the stack structure is reduced.Type: ApplicationFiled: October 24, 2006Publication date: April 24, 2008Applicant: Applied Materials, Inc.Inventors: Yanping Li, Yan Ye
-
Publication number: 20080092819Abstract: The present invention relates to semiconductor reaction chambers including a substrate support structure with rapid temperature change capabilities. The methods and components of the present invention may be used substrate deposition and related processes where varied temperatures are used. In accordance with the advantages of the present invention, the reaction chambers and substrate support structures of the invention can change temperature within a short duration of time, thereby allowing quicker processing times. The substrate support structures generally include a susceptor surface formed from a material having configured so as to allow for rapid temperature change of greater than about 10° C./sec.Type: ApplicationFiled: October 24, 2006Publication date: April 24, 2008Applicant: Applied Materials, Inc.Inventors: David Bour, Lori D. Washington