Patents Assigned to Applied Materials
  • Patent number: 6183130
    Abstract: A temperature sensor for measuring a temperature of a substrate in a thermal processing chamber is described. The chamber includes a reflector forming a reflecting cavity with a substrate when the substrate is positioned in the chamber. The temperature sensor includes a probe having an input end positioned to receive radiation from the reflecting cavity, and a detector optically coupled to an output end of the probe. The radiation entering the probe includes reflected radiation and non-reflected radiation. The detector measures an intensity of a first portion of the radiation entering the probe to generate a first intensity signal and measures an intensity of a second portion of the radiation entering the probe to generate a second intensity signal. The detector is configured so that a ratio of the reflected radiation to the non-reflected radiation is higher in the first portion than the second portion. The two intensity signals are used to calculate the temperature and emissivity of the substrate.
    Type: Grant
    Filed: August 6, 1998
    Date of Patent: February 6, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Bruce Adams, Aaron Hunter, Alex Rubinchik, Mark Yam, Paul A. O'Brien
  • Patent number: 6183655
    Abstract: A plasma etch process, particularly applicable to a self-aligned contact etch or other advanced structures requiring high-selectivity to nitride or other non-oxide materials and producing no etch stop. The process is preferably performed in a high-density plasma reactor for etching holes with either high or low aspect rations. In this process, hexafluoropropylene (C3F6) is the principal etching gas and another hydrofluorocarbon such as CH2F2 or C3H2F6 is added at least in part for its polymer-forming ability, which increases selectivity of etching oxide to nitride. The process gas also includes a substantial amount of an inactive gas such as argon. The process gas mixture can be balanced between the active etching gas and the polymer former in proportions to optimize selectivity over other materials without the occurrence of etch stop in narrow contact holes and with a wide process window.
    Type: Grant
    Filed: March 27, 1998
    Date of Patent: February 6, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Ruiping Wang, Gerald Z. Yin, Robert W. Wu, Jian Ding
  • Patent number: 6183614
    Abstract: A magnetron especially advantageous for low-pressure plasma sputtering or sustained self-sputtering having reduced area but full target coverage. The magnetron includes an outer pole face surrounding an inner pole face with a gap therebetween. The outer pole of the magnetron of the invention is smaller than that of a circular magnetron similarly extending from the center to the periphery of the target. Different shapes include a racetrack, an ellipse, an egg shape, a triangle, and a triangle with an arc conforming to the target periphery. The small shape allows high power densities to be applied to the area of the target actually being sputtered. Preferably, the magnetic flux produced by the outer pole is greater than that produced by the inner pole. The asymmetry provides several advantages in high-density plasma sputtering. The invention allows sustained self-sputtering of copper and allows sputtering of aluminum, titanium, and other metal at reduced pressures down to at least 0.1 milliTorr.
    Type: Grant
    Filed: August 12, 1999
    Date of Patent: February 6, 2001
    Assignee: Applied Materials, Inc.
    Inventor: Jianming Fu
  • Patent number: 6180533
    Abstract: The present disclosure includes a method of plasma etching a trench having rounded top corners in a silicon substrate. One embodiment includes the following general steps: a) providing a semiconductor structure comprising a hard masking layer, overlying a silicon substrate; b) plasma etching through said hard masking layer and any additional underlying layers overlying said silicon substrate using at least one plasma feed gas which does not provide polymer deposition on surfaces of said semiconductor structure during etching; where said plasma etching exposes a face of said silicon substrate; and c) plasma etching at least a first portion of a trench into said silicon substrate using reactive species generated from a feed gas comprising a source of fluorine, a source of carbon, a source of hydrogen, and a source of high energy species which provide physical bombardment of said silicon substrate.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: January 30, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Alok Jain, Michelle Siew Mooi Low, Gang Zou, David Mui, Dragan Podlesnik, Wei Liu
  • Patent number: 6179465
    Abstract: A calibration instrument for calibrating a temperature probe, such as pyrometer. The calibration instrument uses two stable light sources, such as light emitting diodes, to simulate a blackbody of a known temperature.
    Type: Grant
    Filed: May 22, 1997
    Date of Patent: January 30, 2001
    Assignee: Applied Materials, Inc.
    Inventor: Mark Yam
  • Patent number: 6179921
    Abstract: An apparatus for a wafer processing system comprising a wafer support chuck attached to a gas delivery system for delivery of a gas to the backside of a wafer supported by the chuck. The gas delivery system has a gas shutoff valve directly connected to the wafer chuck. The shutoff valve provides a positive shutoff with negligible leak rate. By placing the valve in close proximity to the wafer chuck, the volume of the backside gas trapped between the valve and the wafer is minimized. Release of this trapped gas into the process chamber during wafer transfer has no adverse impact on the performance of the processing system.
    Type: Grant
    Filed: April 19, 1999
    Date of Patent: January 30, 2001
    Assignee: Applied Materials, Inc.
    Inventors: John Ruffell, Karl F. Leeser
  • Patent number: 6179924
    Abstract: The present invention provides a simplified heater design that is scaleable for equipment processing different diameter substrates and that can efficiently and economically process substrates to meet stringent film requirements such as film uniformity for fabricating high integration devices. The present invention is particularly useful for economically and efficiently producing integrated devices using increasingly larger diameter substrates, such as 12-inch (or 300-mm) diameter and even larger substrates. According to one embodiment, the present invention provides a heater assembly for use in a substrate processing apparatus. The heater assembly includes a metal pedestal including a surface for supporting a substrate, and a resistive heating element disposed in the metal pedestal. The heater assembly also includes a purge gas channel system disposed in the metal pedestal. The purge gas channel system includes a central purge gas inlet located substantially at a center of the metal pedestal.
    Type: Grant
    Filed: April 28, 1998
    Date of Patent: January 30, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Jun Zhao, Talex Sajoto, Leonid Selyutin
  • Patent number: 6179925
    Abstract: A method and apparatus for control of precursor and purge additive materials in a deposition system comprising a precursor material delivery system and a plurality of purge additive transfer lines connected between or at components in the precursor material delivery system. One of the plurality of purge additive transfer lines is connected between an ampoule and a liquid mass flow controller, another is connected between the liquid mass flow controller and a vaporizer and a third is connected to the vaporizer. The apparatus further comprises a process chamber connected to the precursor material delivery system and having a susceptor wherein one of the plurality of purge additive transfer lines is connected to the susceptor. With the apparatus and accompanying method, formation of particulate contaminants is greatly reduced.
    Type: Grant
    Filed: May 14, 1999
    Date of Patent: January 30, 2001
    Assignee: Applied Materials, Inc.
    Inventors: John Schmitt, Bo Zheng, Mei Chang, Stephen Voss
  • Patent number: 6180926
    Abstract: A heat exchanger apparatus including a heat exchange element and a substrate support. A clamp member is coupled to the heat exchange element and the substrate support by expanding the clamp member to an expanded state sufficient to surround a portion of the substrate support and the heat exchange element, and contracting the clamp member to couple the clamp member to the substrate support.
    Type: Grant
    Filed: October 19, 1998
    Date of Patent: January 30, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Thomas M. Duddy, Robin M. Ellis, Craig A. Bercaw
  • Patent number: 6178920
    Abstract: The present invention employs an internal inductive antenna capable of generating a helicon wave for generating a plasma. One embodiment of the present invention employs loop type antenna secured within a bell shaped portion of the chamber. Another embodiment employs a flat coil type antenna secured within the chamber. In the preferred embodiments, the internal antenna of the present invention is constructed to prevent sputtering of the antenna. The antenna may be formed of a non-sputtering conductive material, or may formed a conductive material surrounded, completely or partially, by a non-sputtering jacket. In one embodiment, the non-sputtering jacket may be coupled to the chamber wall so that heat generated by the antenna is transferred between the jacket and the chamber wall by conduction. Preferably, the non-sputtering jacket is formed of a material that also is electrically insulative with the surface of the antenna exposed to plasma being segmented to inhibit eddy current in conductive deposits.
    Type: Grant
    Filed: June 18, 1999
    Date of Patent: January 30, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Yan Ye, Allan D'Ambra, Yeuk-Fai Edwin Mok, Richard E. Remington, James E. Sammons, III
  • Patent number: 6178918
    Abstract: A plasma enhance chemical processing reactor and method. The reactor includes a plasma chamber and a source of electromagnetic energy. The plasma chamber is in communication with a process chamber which includes a wager support and a gas manifold. The plasma generated in the plasma chamber extends into the process chamber and interacts with the reactive gases to deposit a layer of material on the wafer. The reactor also includes a vacuum system for exhausting the reactor. The method includes the steps of generating a plasma within the plasma chamber, introducing at least one gaseous chemical into the process chamber proximate to the wafer support and applying r.f. gradient to induce diffusion of the plasma to the area proximate the wafer support.
    Type: Grant
    Filed: June 5, 1998
    Date of Patent: January 30, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Ron van Os, William J. Durbin, Richard H. Matthiesen, Dennis C. Fenske, Eric D. Ross
  • Patent number: 6179466
    Abstract: A method of correcting a temperature probe reading in a thermal processing chamber for heating a substrate, including the steps of heating the substrate to a process temperature and using a first, a second and a third probe to measure the temperature of the substrate. The first probe has a first effective reflectivity and the second probe has a second effective reflectivity. The first probe produces a first temperature indication, the second probe produces a second temperature indication and the third probe produces a third temperature indication. The first and second effective reflectivities may be different. From the first and second temperature indications, a corrected temperature reading for the first probe may be derived, wherein the corrected temperature reading is a more accurate indicator of an actual temperature of the substrate than an uncorrected readings produced by both the first and second probes.
    Type: Grant
    Filed: March 18, 1998
    Date of Patent: January 30, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Bruce W. Peuse, Gary E. Miner, Mark Yam, Aaron Hunter, Peter Knoot, Jason Mershon
  • Patent number: 6179690
    Abstract: A chemical mechanical polishing apparatus includes a rotating plate on which a substrate is received, and a polishing pad which moves across the substrate as it rotates on the plate to polish the substrate. The load of the pad against the substrate, and the rotary speed of the plate, may be varied to control the rate of material removed by the pad.
    Type: Grant
    Filed: June 11, 1999
    Date of Patent: January 30, 2001
    Assignee: Applied Materials, Inc.
    Inventor: Homayoun Talieh
  • Patent number: 6179709
    Abstract: A substrate polishing scheme (apparatus and method) is described according to which a polishing surface of a polishing sheet is driven in a generally linear direction by a drive mechanism, a surface of a substrate is held against the polishing surface of the polishing sheet by a polishing head, and the substrate is probed through the polishing sheet by a monitoring system.
    Type: Grant
    Filed: February 4, 1999
    Date of Patent: January 30, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Fred C. Redeker, Manoocher Birang, Shijian Li, Sasson Somekh
  • Patent number: 6179277
    Abstract: The present invention provides for improved liquid vaporizer systems and methods for their use. Vaporizer systems of the present invention are likely to be particularly useful for the vaporization of liquids having a relatively low vapor pressure, such as TDMAT. In one preferred embodiment, a liquid vaporizer system (10) includes a vaporizer unit (16) having first and second inlets (50 and 60) and an outlet (62). The vaporizer system further includes a vessel (22) having an inlet (70) and an outlet (72), whereby the vessel inlet is operably connected to the vaporizer outlet. The vessel contains a plurality of passages (78) which operably connect the vessel inlet and the vessel outlet. In this manner, liquids and/or gases flowing into the vaporizer unit through either or both of its two inlets, exit the vaporizer unit outlet and enter the vessel inlet. Liquids and/or gases pass through the plurality of passages and exit the vessel outlet.
    Type: Grant
    Filed: February 27, 1998
    Date of Patent: January 30, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Joel M. Huston, Fufa Chen
  • Patent number: 6176667
    Abstract: A multideck wafer processing system is described for the treatment of semiconductor wafers. The system includes at least two process chambers stacked one above the other to provide for higher wafer throughput per unit area of cleanroom space. The stacked process chambers enable sharing of pressurization, gas, electrical, and control support services for the processing chambers.
    Type: Grant
    Filed: April 30, 1996
    Date of Patent: January 23, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Kevin Fairbairn, Ashok Sinha
  • Patent number: 6177344
    Abstract: A multistep method for planarizing a silicon oxide insulating layer such as a deposited borophosphosilicate glass (BPSG) layer. The method includes several different planarization stages. During an initial, pre-planarization stage, a substrate having a BPSG layer deposited over it is loaded into a substrate processing chamber. Then, during a first planarization stage after the pre-planarization stage, oxygen and hydrogen are flowed into the substrate processing chamber to form a steam ambient in said chamber and the substrate is heated in the steam ambient from a first temperature to a second temperature. The first temperature is below a reflow temperature of the BPSG layer and the second temperature is sufficient to reflow the layer. After the substrate is heated to the second temperature during a second planarization stage, the temperature of the substrate and the conditions within the substrate processing chamber are maintained at conditions sufficient to reflow the BPSG layer in the steam ambient.
    Type: Grant
    Filed: November 25, 1998
    Date of Patent: January 23, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Li-Qun Xia, Richard A. Conti, Maria Galiano, Ellie Yieh
  • Patent number: 6176198
    Abstract: The invention provides a deposition system and methods of depositing materials onto substrates. In one aspect, a modular processing chamber is provided which includes a chamber body defining a processing region. The chamber body includes a removable gas feedthrough, an electrical feedthrough, a gas distribution assembly mounted on a chamber lid and a microwave applicator for generating reactive gases remote from the processing region.
    Type: Grant
    Filed: November 2, 1998
    Date of Patent: January 23, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Yeh-Jen Kao, Fong M. Chang, Robert B. Majewski, John Parks, David Wanamaker, Yen-Kun Wang
  • Patent number: 6176978
    Abstract: The present invention provides a method of reducing particles within a deposition chamber without affecting bias voltage repeatability in subsequently processed wafers. Particularly, it has been discovered that within a high density plasma deposition chamber, the first wafer processed following deposition of a pasting layer may exhibit inconsistent quality as compared to subsequently processed wafers. It has further been discovered that such altered quality arises due to inconsistent bias voltage coupling between a wafer support and a wafer positioned thereon. To maintain consistent bias voltage coupling a transitional layer is deposited within the deposition chamber as part of the pasting process. It is believed the transitional layer affects the chamber's environment (chamber surfaces and atmosphere) which in turn affects bias voltage coupling between the wafer support and a wafer positioned thereon. Preferably the transitional layer is the same layer deposited on production wafers.
    Type: Grant
    Filed: August 18, 1997
    Date of Patent: January 23, 2001
    Assignee: Applied Materials, Inc.
    Inventor: Kenny King-tai Ngan
  • Patent number: D436609
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: January 23, 2001
    Assignee: Applied Materials, Inc.
    Inventor: Avi Tepman