Abstract: A method for splitting a wide angle view of a scene into a plurality of display views is provided. The wide angle view is captured by a wide angle lens camera. The method comprises detecting, over time, objects in the scene; determining positions of the detected objects; determining one or more areas of interest within the scene based on the determined positions of the objects; and determining splitting boundaries for the plurality of display views in the wide angle view such that the splitting boundaries avoids the one or more areas of interest. A monitoring camera having a wide angle lens is also provided.
Abstract: The present invention relates to allowing control of a monitoring camera, typically outside of what is supported by a video management system, to which the camera is connected. The camera overlays a pattern on the video stream representing a link to an action in a control interface for controlling the camera and an operator uses an operator controlled device, such as a mobile phone, to scan the pattern and perform the action to control the camera.
Abstract: There is provided a method for blending a first image and a second image having overlapping fields of view. The first and the second images are blended in a blending region. A width of the blending region is selected based on similarity between a first set of camera parameters used when capturing the first image and a second set of camera parameters used when capturing the second image such that the width decreases with increasing similarity.
Abstract: A method and a controller for controlling a video processing unit to facilitate detection of newcomers in a first environment. The method comprises: capturing a thermal image of a human object in the first environment, the first environment being associated with a first climate; calculating, based on the thermal image, a thermal signature of a portion of the human object; determining that the human object has entered the first environment from a second environment when the thermal signature of the portion of the human object deviates from a predetermined thermal signature associated with the first environment, wherein the second environment is associated with a second, different, climate; and controlling the video processing unit to prioritize the human object over other human objects when processing video frames depicting the human object together with the other human objects.
Type:
Application
Filed:
October 22, 2018
Publication date:
May 2, 2019
Applicant:
Axis AB
Inventors:
Xing Danielsson Fan, Niclas Danielsson, Anton Jakobsson, Emanuel Johansson, Thomas Winzell, Jesper Bengtsson
Abstract: Methods and apparatus, including computer program products, implementing and using techniques for encoding a video sequence having a plurality of image frames, wherein at least some of the image frames include a privacy mask. An original total amount of motion is estimated in a received image frame. A reduced amount of motion is determined in the image frame, based on the estimated total amount of motion for the image frame and the size and position of the privacy mask. The image frames are encoded into a sequence of output image frames, wherein a temporal frame distance is adjusted based on the determined reduced amount of motion.
Abstract: An image capturing device captures a first image of the scene without illuminating the scene with IR radiation. The image capturing device determines a first value of a measure relating to contrast for the first image. When the first value indicates that a first contrast of the first image less than a first threshold value, the image capturing device captures a second image of the scene while illuminating the scene with IR radiation. The image capturing device determines a second value of the measure relating to contrast for the second image. When a difference between the first contrast and a second contrast, indicated by the second value, is greater than a second threshold value, the image capturing device determines that there is fog in the scene. A computer program and a computer program carrier are also disclosed.
Abstract: A method and an encoder for encoding a video stream in a video coding format supporting auxiliary frames which includes receiving first image data captured by a video capturing device, using the first image data as image data of a first auxiliary frame, encoding the first auxiliary frame as an intra frame, and encoding a first frame as an inter frame referencing the first auxiliary frame, wherein motion vectors of the first frame are representing a first image transformation to be applied to the first image data.
Abstract: A method and an encoder for encoding a video stream in a video coding format supporting auxiliary frames, where such auxiliary frames, in conjunction with the frames that reference the auxiliary frames, can be used to for rate control, in that the image data of the auxiliary frames comprises a down scaled version of an image data captured by a video capturing device, and that motion vectors of the frame referring to the auxiliary frame are calculated/determined to scale up the down scaled version of the image data to again have the intended resolution.
Abstract: There is provided a device (100) having hardware (102) and a first, upgradable, firmware (106) for controlling the hardware. The device further has a hypervisor (104) which links the first firmware to the hardware so as to control access of the first firmware to the hardware. In preparation for an upgrade of the first firmware, the hypervisor is configured to deny access of the first firmware to the hardware, access a second firmware, and control the hardware by the second firmware.
Abstract: A camera comprising: a sensor holder, an image sensor mounted on the sensor holder, a mount holder, and a lens mount being adapted to receive a lens array and being mounted to the mount holder, wherein the sensor holder is attached to the mount holder, wherein a gap having an extension along an optical axis of the camera is formed between the sensor holder and the lens mount, and wherein the sensor holder is provided with a thermally conducting protrusion bridging the gap and being in contact with the lens mount at an interface allowing relative motion between the lens mount and the thermally conducting protrusion along the optical axis while maintaining contact between the lens mount and the thermally conducting protrusion.
Abstract: A method and a video encoding system for encoding a video stream include video data representing sequentially related image frames, wherein the image frames include a predefined first subarea and a predefined second subarea. The method comprises defining a first bitrate budget, defining a second bitrate budget, encoding the video stream including applying the first bitrate budget to video data of the first subarea and applying the second bitrate budget to video data of the second subarea. The video encoding system comprises an image processor for processing the image stream, a memory including values defining a first bitrate budget and a second bitrate budget, respectively, and a first subarea and a second subarea of the image frames of the image stream and an encoder arranged to encode the image stream, the encoding including applying the first bitrate budget to video data of the first subarea and applying the second bitrate budget to video data of the second subarea.
Abstract: Focusing of a monitoring camera (100) with day and night functionality comprises selecting a focusing day mode or a focusing night mode based on the camera being in day mode or night mode. In focusing day mode, an IR laser range meter (110) will measure a reference distance continuously, and in the focusing night mode the IR laser range meter will only measure reference distance in response to a focus trigger signal being activated, and during a predetermined time period. The focus distance of the camera is set based on the measured reference distance.
Abstract: A method for controlling access in a system comprising a portable device associated with a user and an access control device, includes the portable device and the access control device being configured to wirelessly communicate with each other, the method comprising: pairing the portable device and the access control device, upon the portable device detecting proximity to the access control device, determining at the portable device a signal strength over time of a signal received from the access control device, comparing the determined signal strength over time with a previously determined reference signal strength profile, and upon the determined signal strength over time being considered congruent with the reference signal strength profile, controlling the access control device.