Abstract: A method for generating a summary video sequence from a source video sequence is disclosed. The method comprises: identifying, in the source video sequence, event video sequences, wherein each event video sequence comprises consecutive video frames in which one or more objects of interest are present; extracting, from video frames of one or more event video sequences of the event video sequences, pixels depicting the respective one or more objects of interest; while keeping spatial and temporal relations of the extracted pixels as in the source video sequence, overlaying the extracted pixels of the video frames of the one or more event video sequences onto video frames of a main event video sequence of the event video sequences, thereby generating the summary video sequence. A video processing device configured to generate the summary video sequence is also disclosed.
Abstract: A system comprising a video camera and a client device and a method performed therein. The video camera captures a plurality of images concurrently using a plurality of image sensors having partly overlapping fields of views. Overlapping portions of the images are identified, and the images are joined to generate a panorama image. When joining the images, image data is included from only one of the images in overlapping portions, and image data from the other images in the overlapping portions is ignored. The panorama image and the ignored image data is encoded and transmitted to the client device in an encoded video stream. The client device decodes the video stream and, if the client device is customized, it updates the panorama image in portions corresponding to overlapping portions of the plurality of images using the image data that was ignored by the video camera when generating the panorama image.
Type:
Application
Filed:
May 15, 2018
Publication date:
November 22, 2018
Applicant:
Axis AB
Inventors:
Viktor Edpalm, Song Yuan, Alexandre Martins
Abstract: There is provided a method performed by a device in a network camera system. First and second encoded image data representing the same scene are received (S02, SO4) over a network. The first and the second encoded image data are collected under the same light condition, albeit using different camera parameters. In particular, the second encoded image data is collected using camera parameters which simulate that the second encoded image data is collected under a darker light condition. A ratio of received data amount per time unit of the first encoded image data to received data amount per time unit of the second encoded image data is determined (S06) and the ratio is then used (S08) as an indication of a level of noise in the first encoded image data.
Abstract: A method may include receiving a video stream from a camera and displaying the video stream on a display. The method may further include obtaining, via an eye tracking sensor, information identifying a gaze area for a user watching the display; generating a gradient from the gaze area to edges of the display; and instructing the camera to decrease a bit rate of the video stream outside the gaze area based on the generated gradient.
Abstract: The present invention relates to a bit rate controller comprising: a light determination block configured to determine a light level in images of a captured scene; and a maximum bit rate setting block. The maximum bit rate setting block is configured to: upon the light level being determined to be a low light level, set a low-light maximum bit rate; upon the light level being determined to be an intermediate light level, set an intermediate-light maximum bit rate; or upon the light level being determined to be a high light level, set a high-light maximum bit rate. The low-light maximum bit rate is lower than the intermediate-light maximum bit rate. The high-light maximum bit rate is lower than the intermediate-light maximum bit rate.
Abstract: A method decodes video data based on gaze sensing. The method may decode an encoded video stream received from an encoder associated with a camera, and present the decoded video stream on a display of a device. The method may further detect a gaze point of an operator viewing the display, designate locations associated with the decoded video stream, based upon the gaze point, as skip block insertion points. The method may send the locations to the encoder, wherein the encoder reduces an update rate of inter-frame coded blocks corresponding to the skip block insertion points when encoding video data produced by the camera. An apparatus can implement the method to decode video data based on gaze sensing.
Abstract: A controller and a method for controlling output bitrate of a video encoder when encoding a video stream. The method for controlling output bitrate of a video encoder when encoding a video stream comprises: receiving weather forecast data for a location where the video stream is captured; predicting, based on the weather forecast data, a future increase in output bitrate of the video encoder due to weather affecting contents of the video stream; and reducing the output bitrate of the video encoder by increasing a compression level of the video stream so as to compensate for the future increase in output bitrate of the video encoder.
Abstract: A method and an apparatus for forming a video stream based on images of a scene captured by a camera. The method comprises: encoding image frames based on images captured by the camera, forming an encoded portion; determining a length of motion for a sample image frame, the length of motion being indicative of the amount of relative motion between the camera and the scene in the sample image frame relative a temporally preceding image frame; setting a motion length threshold based on a motion vector search range of the encoder; comparing the determined length of motion with the set motion length threshold; based on the outcome of the comparison, adjusting a chosen temporal frame distance of at least an adjustment portion (PA) of the video stream, wherein the adjustment portion is comprised in the encoded portion or in a temporally later encoded portion.
Abstract: A method of controlling output bitrate of a video encoder encoding a video sequence. The method comprises setting a long-term bit budget for a time period of at least one day for output of the video encoder, and determining a first allowable bitrate based on the long-term bit budget. The method further comprises determining an instantaneous bit restriction for output of the video encoder, and determining a second allowable bitrate based on the instantaneous bit restriction. Output bitrate is controlled based on the first allowable bitrate and the second allowable bitrate, such that the long-term bit budget, the first allowable bitrate and the second allowable bitrate are complied with. The method may be performed in a non-transitory computer-readable medium having instruction stored thereon. The method may also be performed by a bitrate controller. The bitrate controller may be found in a camera and a network video recorder.
Type:
Application
Filed:
April 23, 2018
Publication date:
October 25, 2018
Applicant:
AXIS AB
Inventors:
Viktor Edpalm, Alexander Toresson, Alexandre Martins
Abstract: A camera housing arrangement comprising a camera housing member having a camera housing member extension plane, a camera housing mounting member defining a mounting plane, an abutment, and a pivot joint comprising: a hook portion associated with the camera housing member and a pivot axis portion associated with the camera housing mounting member. The camera housing member is movable by means of articulation about the pivot joint between a first end position in which the camera housing member extension plane is tilted with respect to said mounting plane, and a second end position in which the camera housing member extension plane is aligned with said mounting plane. The abutment is associated with the camera housing member and cooperates with the camera housing mounting member when the camera housing member is in said first end position such that the abutment engages the camera housing mounting member to preventing disconnection.
Type:
Application
Filed:
April 23, 2018
Publication date:
October 25, 2018
Applicant:
Axis AB
Inventors:
Mats-Åke Ekbladh, Kristina Andersson, Lars Andersson
Abstract: A method and a video management system is disclosed. The method may include receiving a video stream from a camera and displaying the video stream on a display. The method may include obtaining, via an eye tracking sensor, gaze information for an operator watching the display. The method may include generating a historical gaze heat map for the video stream for a time period based on the obtained gaze information and determining a low interest area for the video stream based on the generated historical gaze heat map. The method may include instructing the camera to decrease a bit rate of the video stream in the low interest area.
Abstract: A method and an apparatus for playing back recorded video from a temporal position within a temporal range of the recorded video is disclosed. The recorded video including intra frames and inter frames and the recorded video including video sequences having different frame rates. The method comprises receiving a request for playing back the recorded video from a specific temporal position recorded in the recorded video, identifying an intra frame at an earlier temporal position in the recorded video than the specific temporal position received in the request, playing back the recorded video in a first mode from the identified intra frame, and playing back the recorded video in a second mode from the specific temporal position in the recorded video when the playing back of the recorded video in the first mode have arrived at the specific temporal position of in the recorded video.
Abstract: A method for increasing enhancing local contrast in a thermal image for a class of objects having a thermal characteristic is provided. The method including providing thermal image data representing a first thermal image, where the first thermal image is acquired by an absolute calibrated thermal imaging system, redistributing the thermal image data having a first intensity distribution into a second intensity distribution using a predetermined redistribution function, where the predetermined redistribution function is based on the thermal characteristic, such that the local contrast is enhanced for the class of objects, outputting the redistributed thermal image data as the thermal image. An apparatus for enhancing local contrast in a thermal image for a class of objects having a thermal characteristic is further provided.
Type:
Grant
Filed:
September 8, 2016
Date of Patent:
October 23, 2018
Assignee:
Axis AB
Inventors:
Thomas Winzell, Emanuel Johansson, Mats Bylander, Jesper Bengtsson
Abstract: A method of pre-processing digital images captured by an image sensor for encoding is disclosed. The method comprises receiving a first digital image, receiving information representative of a movement of the image sensor at a time of capture of said first digital image), and pre-processing said first digital image. At least one parameter of said pre-processing is dependent on said information representative of movement. A digital image pre-processing system is also disclosed.
Type:
Grant
Filed:
August 25, 2016
Date of Patent:
October 23, 2018
Assignee:
Axis AB
Inventors:
Alexandre Martins, Viktor Edpalm, Xing Danielsson Fang, Lars Persson, Fredrik Pihl
Abstract: The present invention relates to a method for encoding digital video data corresponding to a sequence of digital source images using a cache memory, each of the digital source images having an equal source image width corresponding to a first number of blocks, the cache memory having a cache width corresponding to a second number of blocks, wherein the second number of blocks is smaller than the first number of blocks.