Abstract: An arrangement for supporting a monitoring camera is provided. The arrangement comprising: an arm (102), a ball (104) associated with a free end (106) of the arm (102) and comprising a first (108) and a second (110) ball segment, a body (112) having an ball socket (114) accommodating the ball (104), an arm opening (116) arranged in the ball socket (114) and an abutment opening (118), wherein the arm (102) extends from the ball socket (114) through the arm opening (116), and wherein the first (108) and second (110) ball segments are connectible to the free end (106) of the arm (102) by insertion of the free end (106) of the arm (102) into the ball socket (114) through the arm opening (116) and insertion of the first (108) and second (110) ball segments into the ball socket (114) through the abutment opening (118). A method (400) for assembling the arrangement (100) for supporting a monitoring camera is further provided.
Abstract: A method for detecting an object crossing event at a predetermined first line in a scene captured by a motion video camera is disclosed. The method comprises determining from images of the scene captured by the motion video camera if an object image crosses the predetermined first line, calculating a size value relating to the size of the object image crossing the predetermined first line, setting a line distance value to a value calculated from the distance between a contact point of the object with the predetermined first line and a nearby point on a predetermined second line, and generating an object crossing event signal if a relation between the calculated size value and the line distance is within a predetermined range.
Abstract: A monitoring device arrangement is disclosed that may comprise a mounting rail and at least two fixed monitoring devices. The fixed monitoring devices may each being mounted on a respective holder. The holders may be arranged on the mounting rail. Each holder may include a lock device that locks the holder in a determined position on the mounting rail. The lock device may be releasable to allow sliding repositioning of the holder on the mounting rail.
Type:
Grant
Filed:
October 24, 2017
Date of Patent:
August 21, 2018
Assignee:
Axis AB
Inventors:
Johan Bergsten, Jens Pahlitzsch, Niclas Moller Lewin
Abstract: A method for processing an image in a video device, comprises reading an image and combining the image with metadata related to the image by embedding the metadata in or with the image. The method further includes combining transforming the image and extracting the metadata from the image, before encoding the image in an encoder and utilizing the metadata as input in further processing.
Abstract: A lens arrangement for a monitoring camera and a monitoring camera including a lens arrangement is provided. The lens arrangement includes a lens member having a connection portion with an outer thread, an adjustment member having a through hole for receiving the connection portion and an inner thread corresponding to the outer thread, a holder member having a receiving portion for receiving the connection portion and an inner thread corresponding to the outer thread. The lens arrangement is assembled by the connection portion being screwed into the through hole and further into the receiving portion. The receiving portion has a top engagement surface and the adjustment member has a bottom engagement surface. The adjustment member is movable relative to the holder member by screwing between non-engaging and engaging states. In the engaging state, the bottom engagement surface wedgingly engages with the top engagement surface for locking the lens member.
Abstract: The present invention relates to the field of processing a video stream, and more particular to the field of post processing of a video stream using shaders. The processing of the video stream is divided between a video stream processing device and a client device.
Abstract: The present invention relates to a method for encoding digital video data corresponding to a sequence of digital source images using a cache memory, each of the digital source images having an equal source image width corresponding to a first number of blocks, the cache memory having a cache width corresponding to a second number of blocks, wherein the second number of blocks is smaller than the first number of blocks.
Abstract: There is provided a method, a device and a system for modifying at least one parameter used by a video processing algorithm, such as a motion detection algorithm, an object detection algorithm, or an object tracking algorithm, for monitoring of a scene (102). The method comprises: receiving a first (105a) and a second (105b) video sequence of the scene (102), wherein the first video sequence (105a) is captured using a thermal camera (104a) such that the first video sequence (105a) comprises thermal information being indicative of temperatures in the scene (102), and applying the video processing algorithm to the second video sequence (105b), wherein at least one parameter used by the video processing algorithm is modified based on the thermal information comprised in the first video sequence (105a).
Abstract: A method for delivering motion video, which is captured by a first motion video camera, to a client device from said first motion video camera. The method comprises receiving, at the first motion video camera from the client, a request of a motion video and an indication of a requested format, matching, in a transcoding format list of the first motion video camera, the selected format to an address of a second motion video camera, sending, to said address of the second motion video camera, a motion video which have been identified in a request, the motion video having a format different from the selected format, receiving at the first motion video camera from the second motion video camera said requested motion video in the selected format, and sending said requested motion video in the selected format to the client.
Type:
Grant
Filed:
November 6, 2014
Date of Patent:
July 10, 2018
Assignee:
Axis AB
Inventors:
Fredrik Hugosson, Ted Hartzell, Bjarne Rosengren
Abstract: A method for sequential control of a diaphragm arrangement of a camera, the arrangement comprising a diaphragm, and an integrated IR cut filter always covering at least a portion of an aperture opening of the diaphragm, comprising: initiating closing or opening of the diaphragm; detecting an amount of incident radiation when the diaphragm has an initial aperture opening; shifting the aperture opening to an intermediate aperture opening to alter the ratio between visible light and infrared radiation passing the diaphragm; detecting an amount of incident radiation following the shift; calculating a composition of visual light and infrared radiation in the scene from the detected amounts of incident radiation and a calculated ratio between visible light and infrared radiation when having the initial aperture opening and the intermediate aperture opening, respectively; and shifting the aperture opening of the diaphragm to a new position.
Abstract: A method, video server, and system for playing back recorded video based on comparing the encoder frame rates at temporal positions of a received video sequence to a predetermined threshold and changing the playback frame rate to a playback frame rate greater than the encoder frame rate if the encoder frame rate is below the predetermined threshold and changing the playback frame rate to the encoder frame rate if the encoder frame rate is greater than the predetermined threshold. The recorded video is thereby played back in a time efficient manner, decreasing the total time period for video playback, and assisting a security operator in finding parts of the recorded video that may be of interest.
Abstract: Methods and apparatus, including computer program products, implementing and using techniques for configuring an artificial neural network to a particular surveillance situation. A number of object classes characteristic for the surveillance situation are selected. The object classes form a subset of the total number of object classes for which the artificial neural network is trained. A database is accessed that includes activation frequency values for the neurons within the artificial neural network. The activation frequency values are a function of the object class. Those neurons having activation frequency values lower than a threshold value for the subset of selected object classes are removed from the artificial neural network.
Type:
Application
Filed:
December 21, 2017
Publication date:
June 28, 2018
Applicant:
Axis AB
Inventors:
Robin Seibold, Jiandan Chen, Hanna Björgvinsdóttir, Martin Ljungqvist
Abstract: An infrared (IR) filter arrangement for a camera having an associated IR illuminator, the arrangement comprising: a fixedly arranged bandpass IR filter filtering out IR frequencies other than those from the IR illuminator; and an IR cut filter at least blocking any IR wavelength transmitted by the fixed band-pass filter, the IR filter being integrated in a diaphragm of the camera, such that closing of the diaphragm aperture entails an increased relative proportion of the diaphragm aperture being covered by the IR cut filter, and opening of the diaphragm aperture entails a decreased relative proportion of the diaphragm aperture being covered by the IR cut filter.
Abstract: A camera comprising: an aperture; an image sensor comprising a plurality of pairs of pixels where in each pair: a first pixel is configured such that it detects radiation which has entered the camera through the aperture to the image sensor via a first radiation path, and a second pixel is configured such that it detects radiation which has entered the camera through the aperture to the image sensor via a second radiation path, the second radiation path being different from the first radiation path; and a filter arranged in the vicinity of the aperture, wherein the filter comprises a first portion configured to block IR-radiation or visible light and a second portion configured to be transparent to wavelengths that are blocked by the first portion, wherein radiation passing the first portion travels to the first pixels, and radiation passing the second portion travels to the second pixels.