Patents Assigned to Carl Zeiss
  • Publication number: 20240038481
    Abstract: Imaging, processing and/or analyzing an object using a particle beam device includes guiding a first particle beam over the object, processing the object using the first particle beam or detecting first interaction particles and/or a first interaction radiation, where the first interaction particles and/or the first interaction radiation results/result from an interaction of the first particle beam with the object, controlling a second deflection device for guiding the second particle beam over the object even while the first particle beam is being guided over the object, and deflecting the first particle beam from the object. Only when the first particle beam has been deflected, the object is processed using the second particle beam or detecting second interaction particles and/or a second interaction radiation that results/result from an interaction of the second particle beam with the object.
    Type: Application
    Filed: June 1, 2023
    Publication date: February 1, 2024
    Applicant: Carl Zeiss Microscopy GmbH
    Inventor: Josef Biberger
  • Publication number: 20240038484
    Abstract: Fastening an object to a movable manipulator and/or an object holder in a particle beam apparatus and moving the object in the particle beam apparatus includes fastening a material unit, configured to hold an object, to the manipulator using a particle beam, fastening the object to the material unit using the particle beam, and, using the manipulator and/or an object stage, moving the object fastened to the material unit. A computer program product has program code which can be loaded into a processor and which, when executed, controls a particle beam apparatus to fasten a material unit, configured to hold an object, to the manipulator using a particle beam, fasten the object to the material unit using the particle beam, and, using the manipulator and/or an object stage, move the object fastened to the material unit.
    Type: Application
    Filed: July 27, 2023
    Publication date: February 1, 2024
    Applicant: Carl Zeiss Microscopy GmbH
    Inventor: Andreas Schertel
  • Publication number: 20240035975
    Abstract: A lab-on-a-chip system (100) comprises an optical detection waveguide (122) that has an at least partially periodic structure (123, 501, 502, 503, 504) that is configured to couple light (152) from surroundings of the optical detection waveguide (122) into the optical detection waveguide (122). The lab-on-a-chip system (100) furthermore also comprises a microfluidic network (212), wherein the microfluidic network (212) has multiple lines and at least one reaction chamber (211, 211-1, 211-2, 211-3).
    Type: Application
    Filed: December 17, 2021
    Publication date: February 1, 2024
    Applicant: Carl Zeiss Jena GmbH
    Inventors: Alexandre Gatto, Michael Totzeck
  • Patent number: 11885751
    Abstract: A testing device for detecting defects of transparent test specimens, in particular of ophthalmological lenses, has an illumination device for transilluminating test specimens to be examined and with an image acquisition device for imaging the test specimen transilluminated by the illumination device. The illumination device includes a plurality of linearly adjustable light sources for generating a stripe pattern. To capture the stripe pattern, the acquisition duration of the image acquisition device can be adjusted in such a way that the light emitted by each of the light sources is detected as a light stripe. Further, the disclosure relates to a testing method for detecting a defect of a transparent specimen.
    Type: Grant
    Filed: September 18, 2023
    Date of Patent: January 30, 2024
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Marc Flemming, Hannes Scheibe, Dominik Wiedemann, Alexander Friedl, Daniel Schoebel
  • Patent number: 11885928
    Abstract: A functionalized waveguide for a detector system includes an incoupling region of a main body that deflects only part of the radiation coming from an object to be detected and impinges on the front face such that the deflected part propagates as coupled-in radiation in the main body by reflections up to the decoupling region and impinges on the decoupling region. A decoupling region deflects at least part of the coupled-in radiation impinging thereon such that the deflected part exits the main body via the front or rear face to impinge on the detector system. The extent of the incoupling region in a second direction transverse to the first direction is greater than the extent of the decoupling region in the second direction. In the second direction, the incoupling region has at least two different diffractive incoupling structures which have a different deflection component in the second direction.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: January 30, 2024
    Assignee: Carl Zeiss Jena GmbH
    Inventors: Roman Kleindienst, Christoph Erler, Petr Vojtisek, Marc Junghans, Daniel Thomae, Mirko Riethmueller, Matthias Burkhardt, Alexandre Gatto, Andreas Luetz
  • Patent number: 11883098
    Abstract: A device and a method for determining an ocular aberration of at least one eye of a user are disclosed. The device contains a wavefront sensing unit for measuring at least one optical wavefront with at least one light beam, from which an ocular aberration of the at least one eye of the user is determined. The device further contains at least one diffractive element for generating multiple diffraction orders in the light beam in two meridians in a manner that the multiple diffraction orders are spatially separated on the wavefront sensing unit and in the eye of the user. The device and the method allow generating an ocular defocus map in a one-shot assessment in real-time, especially by employing an automated measurement of the ocular aberrations with regard to different eccentricities of the eye of the user in two meridians.
    Type: Grant
    Filed: December 20, 2022
    Date of Patent: January 30, 2024
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Nikolai Suchkov, Siegfried Wahl
  • Patent number: 11887319
    Abstract: Various methods for reducing artifacts in OCT images of an eye are described. In one exemplary method, three dimensional OCT image data of the eye is collected. Motion contrast information is calculated in the OCT image data. A first image and a second image are created from the motion contrast information. The first and the second images depict vasculature information regarding one or more upper portions and one or more deeper portions, respectively. The second image contains artifacts. Using an inverse calculation, a third image is determined that can be mixed with the first image to generate the second image. The third image depicts vasculature regarding the same one or more deeper portions as the second image but has reduced artifacts. A depth dependent correction method is also described that can be used in combination with the inverse problem based method to further reduce artifacts in OCT angiography images.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: January 30, 2024
    Assignee: Carl Zeiss Meditec, Inc.
    Inventors: Homayoun Bagherinia, Nathan D. Shemonski
  • Patent number: 11886126
    Abstract: The present application relates to an apparatus and to a method for removing at least a single particulate from a substrate, especially an optical element for extreme ultraviolet (EUV) photolithography, wherein the apparatus comprises: (a) an analysis unit designed to determine at least one constituent of a material composition of the at least one single particulate; and (b) at least one gas injection system designed to provide a gas matched to the particular constituent in an environment of the at least one single particulate; (c) wherein the matched gas contributes to removing the at least one single particulate from the substrate.
    Type: Grant
    Filed: July 7, 2021
    Date of Patent: January 30, 2024
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Klaus Edinger, Christian Felix Hermanns, Tilo Sielaff, Jens Oster, Christof Baur, Maksym Kompaniiets
  • Patent number: 11880145
    Abstract: A method for measuring a substrate for semiconductor lithography using a measuring device, wherein the measuring device comprises a recording device for capturing at least a partial region of the substrate and, wherein the distance between the substrate and an imaging optical unit of the recording device is varied while the partial region is captured by the recording device.
    Type: Grant
    Filed: October 26, 2022
    Date of Patent: January 23, 2024
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Sven Martin, Oliver Jaeckel
  • Patent number: 11880026
    Abstract: A microscope, which includes a color splitter that is reflective to excitation radiation, can switch between a first and a second operating mode. A first apparatus can introduce a first cylindrical optical element into the excitation beam path between a light source and the color splitter, when the microscope is in the first operating mode, and a second apparatus can introduce a second cylindrical optical element into the excitation beam path between the color splitter and a scanning apparatus.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: January 23, 2024
    Assignee: CARL ZEISS MICROSCOPY GMBH
    Inventors: Tiemo Anhut, Daniel Schwedt, Matthias Wald, Thomas Mehner
  • Patent number: 11879721
    Abstract: A measurement method for interferometrically measuring the shape of a surface (112) of a test object (114). A test wave (125-1, 125-2) directed at the test object has a wavefront that is at least partially adapted to the desired shape of the surface, and a reference wave (128-1, 128-2) directed at a reflective optical element (130-1, 130 2) has a propagation direction that deviates from the propagation direction of the test wave (125-1, 125-2) for each of two input waves by diffraction at a diffractive element (124). For each wavelength, the test wave is superimposed after interaction with the test object with the associated reference wave after the back-reflection at the first reflective optical element. The test and reference waves are diffracted again at the diffractive element for superposition. An interferogram produced by the superposition is captured in a capture plane (148-1, 148-2). The interferograms are jointly evaluated.
    Type: Grant
    Filed: March 22, 2022
    Date of Patent: January 23, 2024
    Assignee: CARL ZEISS SMT GMBH
    Inventor: Alexander Wolf
  • Patent number: 11879720
    Abstract: A device and a method for characterizing the surface shape of a test object. The device for characterizing the surface shape of a test object has a test arrangement (130, 230) for determining the surface shape of a test object (111, 112, 113, 211, 212, 213) using a test wave. The test wave has a wavefront generated by diffraction at a diffractive optical element. The device additionally has a first vacuum chamber (110, 210) and a second vacuum chamber (120, 220), wherein the second vacuum chamber (120, 220) has a magazine for mounting at least two diffractive optical elements (121, 122, 123, 221, 222, 223).
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: January 23, 2024
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Jochen Hetzler, Holger Jennewein
  • Patent number: 11874534
    Abstract: A spectacle lens includes at least one substrate and at least one photochromic layer. The spectacle lens exhibits no swelling of the coating and/or of the substrate in the event of at least one damage to the surface of the spectacle lens with a force of ?65 m N after contamination of the surface of the spectacle lens with at least one organic acid over a period from a range of 12 hours to 84 hours. Further, a method for producing the spectacle lens and the use of at least one chemically modified layer and/or at least one barrier layer for coating a spectacle lens substrate is disclosed.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: January 16, 2024
    Assignee: Carl Zeiss Vision International GmbM
    Inventors: Norbert Hugenberg, Silvia Faul, Bin Peng, David Diggins, Michael Krieger, Markus Haidl
  • Patent number: 11874598
    Abstract: The present application relates to a method for disposing of excess material of a photolithographic mask, wherein the method comprises the following steps: (a) enlarging a surface of the excess material; (b) displacing the enlarged excess material on the photolithographic mask using at least one first probe of a scanning probe microscope; and (c) removing the displaced enlarged excess material from the photolithographic mask.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: January 16, 2024
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Michael Budach, Christof Baur, Klaus Edinger, Tristan Bret
  • Patent number: 11874525
    Abstract: An optical element reflects radiation, such as EUV radiation. The optical element includes a substrate with a surface to which a reflective coating is applied. The substrate has at least one channel through which a coolant can flow. The substrate is formed from fused silica, such as titanium-doped fused silica, or a glass ceramic. The channel has a length of at least 10 cm below the surface to which the reflective coating is applied. The cross-sectional area of the channel varies by no more than +/?20% over the length of the channel.
    Type: Grant
    Filed: June 2, 2022
    Date of Patent: January 16, 2024
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Eric Eva
  • Patent number: 11874528
    Abstract: A method for applying an optical mark to a spectacle lens mounted in a spectacle frame includes determining an intended position of the optical mark at the spectacle lens based on the spectacle frame. The method further includes taking an image of at least a part of the spectacle frame and arranging the spectacle frame in a marking device having a marking appliance and adjusting the relative position of the spectacle frame and the marking appliance such that an actuation axis of the marking appliance intersects with the spectacle lens at the intended position of the optical mark. Additionally, the optical mark to the spectacle lens is applied at the intended position by using the marking appliance. The use of a spectacle frame as a positioning reference for an optical mark and a marking device are also disclosed.
    Type: Grant
    Filed: July 21, 2023
    Date of Patent: January 16, 2024
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Ralf Vallerius, Elmar Rothe, Friedrich Pauker
  • Patent number: 11867978
    Abstract: A depth information detection device detects an item of depth information relating to a user's head, including a distance from the user's head to the device. On the basis of this depth information and, if applicable, additional information such as images, an evaluation device determines the desired parameters for fitting the spectacles, such as centering parameters.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: January 9, 2024
    Assignees: Carl Zeiss Vision International GmbH, Carl Zeiss AG
    Inventors: Tobias Breuninger, Holger Wegendt, Oliver Schwarz, Jeremias Gromotka
  • Patent number: 11864841
    Abstract: A method of operating a surgical microscope includes receiving an instruction to move the camera relative to the object, operating a zoom lens to zoom out and displaying images obtained by processing images recorded by the camera such that centers of the displayed images correspond to a target position within the recorded images and such that the magnification of the object displayed in the images is the initial magnification, wherein the target position is displaced within the recorded images relative to the first position, and operating actuators to move the camera.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: January 9, 2024
    Assignee: Carl Zeiss Meditec AG
    Inventors: Fang You, David Dobbelstein, Stefan Saur
  • Patent number: 11867642
    Abstract: The invention relates to an inspection device for masks for semiconductor lithography, comprising an imaging device for imaging a mask, and an image recording device, wherein one or more correction bodies which exhibit a dispersive behavior for at least one subrange of the illumination radiation used for the imaging are arranged in the light path between the mask and the image recording device. The invention furthermore relates to a method for taking account of longitudinal chromatic aberrations in inspection devices for masks, comprising the following steps: recording a specific number of images having differently defocused positions, and selecting a subset of the images and simulating a longitudinal chromatic aberration of a projection exposure apparatus.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: January 9, 2024
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Holger Seitz, Thomas Zeuner, Heiko Feldmann
  • Patent number: 11864979
    Abstract: A planning device for generating control data, a treatment apparatus for refraction correction eye surgery and a method for generating control data for such a treatment apparatus which allows an improved subsequent refraction correction. The planning device includes a calculation processor for defining a cut surface of the cornea for post-treatment, wherein the calculation device is designed such that a change of thickness of the epithelium is taken into account in the calculation, which was caused essentially by a pretreatment.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: January 9, 2024
    Assignee: Carl Zeiss Meditec AG
    Inventors: Ahmed Sedky, Mark Bischoff, Matthias Wottke