Patents Assigned to CSMC TECHNOLOGIES FAB2 CO., LTD.
  • Patent number: 10381343
    Abstract: An electrostatic protection device of an LDMOS silicon controlled structure comprises a P-type substrate (310), an N-well (320) and a P-well (330) on the substrate, a gate electrode (340) overlapping on the P-well (330) and extending to an edge of the N-well (320), a first N+ structure and a first P+ structure provided in the N-well (320), and a second N+ structure and a second P+ structure provided in the P-well (330), the first N+ structure being a drain electrode N+ structure (322), the first N+ structure being a drain electrode N+ structure (322), the first P+ structure being a drain electrode P+ structure (324), the second N+ structure being a source electrode N+ structure (332), the second P+ structure being a source P+ structure (334), and a distance from the drain electrode P+ structure (324) to the gate electrode (340) being greater than a distance from the drain electrode N+ structure (322) to the gate electrode (340).
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: August 13, 2019
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Jun Sun, Zhongyu Lin, Guangyang Wang, Guipeng Sun
  • Publication number: 20190245069
    Abstract: A lateral insulated-gate bipolar transistor and a manufacturing method therefor. The lateral insulated-gate bipolar transistor comprises a substrate, an anode terminal and a cathode terminal on the substrate, and a drift region and a gate electrode located between the anode terminal and the cathode terminal. The anode terminal comprises an N-shaped buffer zone on the substrate, a P well in the N-shaped buffer zone, an N+ zone in the P well, a groove located above the N+ zone and partially encircled by the P well, polycrystalline silicon in the groove, P+ junctions at two sides of the groove, and N+ junctions at two sides of the P+ junctions.
    Type: Application
    Filed: June 21, 2017
    Publication date: August 8, 2019
    Applicant: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventor: Shukun QI
  • Patent number: 10373945
    Abstract: A semiconductor device, having an electro-static discharge (ESD) protection structure, comprises: a diode, connected between a gate and a source of the semiconductor device, and comprising a diode main body, and two connection portions, respectively connected to two terminals of the diode main body and respectively electrically connected to the gate and the source; and a substrate comprising two insulation pads disposed thereon and separated from each other. A surface of the substrate between the insulation pads is provided with an insulation layer. The diode main body is arranged on the insulation layer. The two connection portions are configured to extend, respectively, from either end of the diode main body to the insulation pad on the corresponding side. A dielectric layer is arranged on the diode and the two insulation pads, and a metal conduction line layer is arranged on the dielectric layer.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: August 6, 2019
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventor: Zheng Bian
  • Publication number: 20190238122
    Abstract: A ring voltage control oscillator includes: a conversion unit (100), cascaded multistage delay units (200) and cascaded multistage isolation buffer units (300). The conversion unit (100) receives a voltage signal controlled by the external, converts the voltage signal into a current signal and respectively transmits the current signal to a plurality of delay units (200) and a plurality of isolation buffer units (300).
    Type: Application
    Filed: June 21, 2017
    Publication date: August 1, 2019
    Applicant: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Xueyan WANG, Qiang CHEN
  • Publication number: 20190221560
    Abstract: A device integrated with a depletion-mode junction field-effect transistor and a method for manufacturing the device. The device includes: a well region, which is of a second conduction type and formed within a first conduction region (214); a JFET source (210), which is of a first conduction type and formed within the well region; a metal electrode (212) of the JFET sources formed on the JFET sources (210), which is in contact with the JFET sources (210); a lateral channel region (208), which is of the first conduction type and formed between two adjacent JFET sources (210), while two ends thereof are in contact with the two adjacent JFET sources (210); and a JFET metal gate (213) formed on the well region.
    Type: Application
    Filed: August 21, 2017
    Publication date: July 18, 2019
    Applicant: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Yan GU, Shikang CHENG, Sen ZHANG
  • Publication number: 20190214983
    Abstract: A clock voltage step-up circuit comprises a first inverter, a second inverter, a third inverter, a PMOS transistor, and a bootstrap capacitor. An input end of the first inverter is used for inputting a first clock signal. An input end of the second inverter is connected to an output end of the first inverter, and an output end of the second inverter outputs a first control signal used for controlling a sampling switch; and after the first control signal passes through a fourth inverter, a fifth inverter and a sixth inverter, a second control signal used for controlling the sampling switch is generated. An input end of the third inverter is connected to a second clock signal, and the first clock signals and the second clock signals are a set of clock signals, every two of which are not overlapped. A gate end of the PMOS transistor is connected to a drain end of the PMOS transistor, and a source end of the PMOS transistor is used for being connected to a power supply.
    Type: Application
    Filed: August 22, 2017
    Publication date: July 11, 2019
    Applicant: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventor: Chuan LUO
  • Patent number: 10347730
    Abstract: A trench gate structure and a manufacturing method therefor. The trench structure comprises a substrate (10), a trench on the surface of the substrate (10), an insulating spacer (20) on the substrate (10), a gate oxide layer (41) on the inner surface of the trench, and a polysilicon gate (40) on the gate oxide layer (41). The insulating spacer (20) abuts against the trench by means of a slope structure (21) of the insulating spacer; the polysilicon gate (40) extends onto the insulating spacer (20) along the slope structure (21) in the trench; the insulating spacer (20) comprises a polysilicon gate pull-up area (22) that is concave downwards with respect to other parts of the insulating spacer (20); the polysilicon gate (40) extending out of the trench is rested on the polysilicon gate pull-up area (22).
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: July 9, 2019
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventor: Zheng Bian
  • Patent number: 10349185
    Abstract: An MEMS microphone comprises a substrate (100), a support portion (200), a superimposed layer (600), an upper plate (300) and a lower plate (400). The substrate (100) is provided with an opening (120) penetrating the middle thereof; the lower plate (400) is arranged above and spanning the substrate (100); the support portion (200) is fixed on the lower plate (400); the upper plate (300) is attached on the support portion (200); an accommodation cavity (500) is formed from the support portion (200), the upper plate (300) and the lower plate (400); the superimposed layer (600) is attached on an central region of the upper plate (300) or the lower plate (400), and insulation is achieved between the upper plate (300) and a lower plate (400).
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: July 9, 2019
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventor: Yonggang Hu
  • Patent number: 10347619
    Abstract: Disclosed is a semiconductor device having an electrostatic discharge protection structure. The electrostatic discharge protection structure is a diode connected between a gate electrode and a source electrode of the semiconductor device. The diode comprises a diode body and two connection portions connected to two ends of the diode body and respectively used for electrically connecting to the gate electrode and the source electrode. Lower parts of the two connection portions are respectively provided with a trench. An insulation layer is provided on an inner surface of the trench and the surface of a substrate between trenches. The diode body is provided on the insulation layer on the surface of the substrate. The connection portions respectively extend downwards into respective trenches from one end of the diode body. A dielectric layer is provided on the diode, and a metal conductor layer is provided on the dielectric layer.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: July 9, 2019
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventor: Kui Xiao
  • Patent number: 10340912
    Abstract: A power on reset circuit, comprising: a threshold level control circuit (120) configured to set threshold level values of power on reset and power off reset; a capacitor charge and discharge circuit (130) configured to output a power on reset signal according to the threshold level values set by the threshold level control circuit; and a current bias circuit (110) configured to provide a reference current not varying with a power supply to the threshold level control circuit (120) and the capacitor charge and discharge circuit (130), comprising: a first reference current output terminal connected to the threshold level control circuit (120); a second reference current output terminal connected to the capacitor charge and discharge circuit (130); and a third reference current output terminal connected to the capacitor charge and discharge circuit (130).
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: July 2, 2019
    Assignee: CSMC Technologies FAB2 Co., Ltd.
    Inventor: Yun Gao
  • Patent number: 10290726
    Abstract: A lateral insulated gate bipolar transistor, comprising: a substrate (100), having a first conductivity type; an insulating layer (200), formed on the substrate (100); an epitaxial layer (300), having a second conductivity type and formed on the insulating layer (200); a field oxide layer (400), formed on the epitaxial layer (300); a first well (500), having the first conductivity type; a plurality of gate trench structures (600); second source doped regions (720), having the second conductivity type; first source doped regions (710), having the first conductivity type; a second well (800), having the second conductivity type; a first drain doped region (910), having the first conductivity type and formed on a surface layer of the second well (800); gate lead-out ends (10); a source lead-out end (20); a drain lead-out end (30).
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: May 14, 2019
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Yan Gu, Wei Su, Sen Zhang
  • Patent number: 10290705
    Abstract: Provided are a laterally diffused metal oxide semiconductor field-effect transistor and a manufacturing method therefor. The method comprises: providing a wafer on which a first N well (22), a first P well (24) and a channel region shallow trench isolating structure (42) are formed; forming a high-temperature oxidation film on the surface of the wafer by deposition; photoetching and dryly etching the high-temperature oxidation film, and reserving a thin layer as an etching buffer layer; performing wet etching, removing the etching buffer layer in a region which is not covered by a photoresist, and forming a mini oxidation layer (52); performing photoetching and ion injection to form a second N well (32) in the first N well and form a second P well (34) in the first P well; forming a polysilicon gate (62) and a gate oxide layer on the surface of the wafer; and photoetching and injecting N-type ions to form a drain electrode (72) and a source electrode (74).
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: May 14, 2019
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Feng Huang, Guangtao Han, Guipeng Sun, Feng Lin, Longjie Zhao, Huatang Lin, Bing Zhao
  • Patent number: 10249707
    Abstract: A laterally diffused metal oxide semiconductor field-effect transistor, comprising a substrate (110), a source electrode (150), a drain electrode (140), a body region (160), and a well region on the substrate, the well region comprising: an insertion-type well (122) having P-type doping, being arranged below the drain electrode and being connected to the drain electrode; N wells (124), arranged on two sides of the insertion-type well; and P wells (126), arranged next to the N wells and being connected to the N wells; the source electrode and the body region are arranged in the P well.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: April 2, 2019
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventor: Shukun Qi
  • Patent number: 10236876
    Abstract: A switch control circuit includes: a clock circuit (110) configured to generate a first clock control signal (CLK1) and a second clock control signal (CLK2); a voltage boosting circuit (120) configured to receive the second clock control signal (CLK2) and an operating voltage outputted by the power source (VDD); and boost the operating voltage by a preset value to form a switch control signal (H1) under the control of the second clock control signal (CLK2); and an inverting circuit (130) configured to receive the first clock control signal (CLK1) and the switch control signal (H1), and determine whether or not to output the switch control signal (H1) to the switch circuit according to the first clock control signal (CLK1), so as to control on/off of the switch circuit.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: March 19, 2019
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventor: Chuan Luo
  • Patent number: 10199495
    Abstract: A laterally diffused metal-oxide semiconductor field-effect transistor, comprising a substrate, a first conductivity type well region, a second conductivity type well region, a drain electrode in the first conductivity type well region, a source electrode and a body region in the second conductivity type well region, and a gate electrode arranged across surfaces of the first conductivity type well region and the second conductivity type well region, and also comprising a floating layer ring arranged on the top of the first conductivity type well region and located between the gate electrode and the drain electrode and a plurality of groove polysilicon electrodes running through the floating layer ring and stretching into the first conductivity type well region.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: February 5, 2019
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Shukun Qi, Guipeng Sun
  • Publication number: 20190027564
    Abstract: A trench gate lead-out structure comprises a substrate (10), a trench formed in the surface of the substrate (10) and a first dielectric layer (22) on the substrate (10), and also comprises a polysilicon gate (31) at the inner surface of the trench. The trench is partially filled by the polysilicon gate (31), so that a recess exists in the trench above the polysilicon gate (31). A second dielectric layer (41) is filled in the recess. The trench gate lead-out structure also comprises a metal plug (50). The metal plug (50) downwards penetrates through the first dielectric layer (22) and then is inserted between the second dielectric layer (41) and the polysilicon gate (31), and accordingly is connected to the polysilicon gate (31).
    Type: Application
    Filed: May 26, 2017
    Publication date: January 24, 2019
    Applicant: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventor: Zheng BIAN
  • Publication number: 20180374925
    Abstract: A trench gate structure and a manufacturing method therefor. The trench structure comprises a substrate (10), a trench on the surface of the substrate (10), an insulating spacer (20) on the substrate (10), a gate oxide layer (41) on the inner surface of the trench, and a polysilicon gate (40) on the gate oxide layer (41). The insulating spacer (20) abuts against the trench by means of a slope structure (21) of the insulating spacer; the polysilicon gate (40) extends onto the insulating spacer (20) along the slope structure (21) in the trench; the insulating spacer (20) comprises a polysilicon gate pull-up area (22) that is concave downwards with respect to other parts of the insulating spacer (20); the polysilicon gate (40) extending out of the trench is rested on the polysilicon gate pull-up area (22).
    Type: Application
    Filed: April 27, 2017
    Publication date: December 27, 2018
    Applicant: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventor: Zheng BIAN
  • Patent number: 10093536
    Abstract: An MEMS double-layer suspension microstructure manufacturing method, comprising: providing a substrate; forming a first dielectric layer on the substrate; patterning the first dielectric layer to prepare a first film body and a cantilever beam connected to the first film body; forming a sacrificial layer on the first dielectric layer; patterning the sacrificial layer located on the first film body to make a recess portioned portion for forming a support structure, with the first film body being exposed at the bottom of the recess portioned portion; forming a second dielectric layer on the sacrificial layer; patterning the second dielectric layer to make the second film body and the support structure, with the support structure being connected to the first film body and the second film body; and removing part of the substrate under the first film body and removing the sacrificial layer to obtain the MEMS double-layer suspension microstructure.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: October 9, 2018
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventor: Errong Jing
  • Publication number: 20180286976
    Abstract: A laterally diffused metal-oxide semiconductor field-effect transistor, comprising a substrate, a first conductivity type well region, a second conductivity type well region, a drain electrode in the first conductivity type well region, a source electrode and a body region in the second conductivity type well region, and a gate electrode arranged across surfaces of the first conductivity type well region and the second conductivity type well region, and also comprising a floating layer ring arranged on the top of the first conductivity type well region and located between the gate electrode and the drain electrode and a plurality of groove polysilicon electrodes running through the floating layer ring and stretching into the first conductivity type well region.
    Type: Application
    Filed: August 18, 2016
    Publication date: October 4, 2018
    Applicant: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Shukun QI, Guipeng SUN
  • Publication number: 20180277532
    Abstract: A semiconductor device, having an electro-static discharge (ESD) protection structure, comprises: a diode, connected between a gate and a source of the semiconductor device, and comprising a diode main body, and two connection portions, respectively connected to two terminals of the diode main body and respectively electrically connected to the gate and the source; and a substrate comprising two insulation pads disposed thereon and separated from each other. A surface of the substrate between the insulation pads is provided with an insulation layer. The diode main body is arranged on the insulation layer. The two connection portions are configured to extend, respectively, from either end of the diode main body to the insulation pad on the corresponding side. A dielectric layer is arranged on the diode and the two insulation pads, and a metal conduction line layer is arranged on the dielectric layer.
    Type: Application
    Filed: August 24, 2016
    Publication date: September 27, 2018
    Applicant: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventor: Zheng BIAN