Patents Assigned to Elpida Memory, Inc.
  • Patent number: 9508431
    Abstract: A device including a memory cell including a variable resistive memory element; a capacitor; a voltage generation circuit; and a switch circuit including a first switch and a second switch. The first switch is coupled between the voltage generation circuit and the capacitor without an intervention of the second switch. The second switch is coupled between the capacitor and the memory cell without an intervention of the first switch. The first switch is configured to take an on-state during a first period of time and an off-state during a second period of time following the first period of time and the second switch is configured to take an off-state during the first period of time and an on-state during the second period of time.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: November 29, 2016
    Assignee: ELPIDA MEMORY, INC.
    Inventors: Yukio Tamai, Yusuke Jono
  • Patent number: 9465068
    Abstract: Disclosed herein is a method for testing a semiconductor device, the method includes: preparing a first semiconductor chip having a first bump electrode and a first driver circuit that drives the first bump electrode, and a second semiconductor chip having a second bump electrode and a second driver circuit that drives the second bump electrode; staking the first and second semiconductor chips so that the first bump electrode and the second bump electrode are electrically connected to each other to form a current path including the first and second bump electrodes; and driving, in a test mode, the current path to a first potential by the first driver circuit while driving the current path to a second potential different from the first potential by the second driver circuit.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: October 11, 2016
    Assignee: Elpida Memory, Inc.
    Inventor: Hiroaki Ikeda
  • Patent number: 9281357
    Abstract: A method for forming a capacitor stack includes forming a first bottom electrode layer including a conductive metal nitride material. A second bottom electrode layer is formed above the first bottom electrode layer. The second bottom electrode layer includes a conductive metal oxide material, wherein the crystal structure of the conductive metal oxide material promotes a desired high-k crystal phase of a subsequently deposited dielectric layer. A dielectric layer is formed above the second bottom electrode layer. Optionally, an oxygen-rich metal oxide layer is formed above the dielectric layer. Optionally, a third top electrode layer is formed above the oxygen-rich metal oxide layer. The third top electrode layer includes a conductive metal oxide material. A fourth top electrode layer is formed above the third top electrode layer. The fourth top electrode layer includes a conductive metal nitride material.
    Type: Grant
    Filed: January 19, 2015
    Date of Patent: March 8, 2016
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Hanhong Chen, David Chi, Imran Hashim, Mitsuhiro Horikawa, Sandra G. Malhotra
  • Patent number: 9224878
    Abstract: Provided are MIM DRAM capacitors and methods of forming thereof. A MIM DRAM capacitor may include an electrode layer formed from a high work function material (e.g., greater than about 5.0 eV). This layer may be used to reduce the leakage current through the capacitor. The capacitor may also include another electrode layer having a high conductivity base portion and a conductive metal oxide portion. The conductive metal oxide portion serves to promote the growth of the high k phase of the dielectric layer.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: December 29, 2015
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Sandra G. Malhotra, Hanhong Chen, Wim Deweerd, Arthur Gevondyan, Hiroyuki Ode
  • Patent number: 9218878
    Abstract: A semiconductor device is provided with the variable resistance element, and a control circuit that controls a resistance state of the variable resistance element by controlling current between a first end and a second end of the variable resistance element. The control circuit causes the variable resistance element to change from a first resistance state to a second resistance state by having a first current flow from the first end to the second end of the variable resistance element. In addition, after a second current smaller than the first current is made to flow from the first end to the second end of the variable resistance element, the control circuit causes the variable resistance element to change from the second resistance state to the first resistance state by having a third current flow from the second end to the first end thereof.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: December 22, 2015
    Assignee: ELPIDA MEMORY, INC.
    Inventors: Kenji Mae, Mitsuru Nakura, Kazuya Ishihara, Shinobu Yamazaki
  • Patent number: 9178006
    Abstract: A method for reducing the leakage current in DRAM MIM capacitors comprises forming a multi-layer dielectric stack from an amorphous highly doped material, an amorphous high band gap material, and a lightly-doped or non-doped material. The highly doped material will remain amorphous (<30% crystalline) after an anneal step. The high band gap material will remain amorphous (<30% crystalline) after an anneal step. The lightly-doped or non-doped material will become crystalline (?30% crystalline) after an anneal step. The high band gap material is formed between the amorphous highly doped material and the lightly or non-doped material and provides an intermediate barrier to conduction through the multi-layer dielectric stack.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: November 3, 2015
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Xiangxin Rui, Hanhong Chen, Naonori Fujiwara, Imran Hashim, Kenichi Koyanagi
  • Publication number: 20150228710
    Abstract: A method for reducing the leakage current in DRAM MIM capacitors comprises forming a multi-layer dielectric stack from an amorphous highly doped material, an amorphous high band gap material, and a lightly-doped or non-doped material. The highly doped material will remain amorphous (<30% crystalline) after an anneal step. The high band gap material will remain amorphous (<30% crystalline) after an anneal step. The lightly-doped or non-doped material will become crystalline (?30% crystalline) after an anneal step. The high band gap material is formed between the amorphous highly doped material and the lightly or non-doped material and provides an intermediate barrier to conduction through the multi-layer dielectric stack.
    Type: Application
    Filed: February 10, 2014
    Publication date: August 13, 2015
    Applicants: Elpida Memory, Inc, Intermolecular, Inc.
    Inventors: Xiangxin Rui, Hanhong Chen, Naonori Fujiwara, Imran Hashim, Kenichi Koyanagi
  • Publication number: 20150149717
    Abstract: Some embodiments provide a method to reduce the refresh power consumption by effectively extending the memory cell retention time. Conversion from 1 cell/bit to 2N cells/bit reduces the variation in the retention time among memory cells. Although active power increases by a factor of 2N, the refresh time increases by more than 2N as a consequence of the fact that the majority decision does better than averaging for the tail distribution of retention time. The conversion can be realized very simply from the structure of the DRAM array circuit, and it reduces the frequency of disturbance and power consumption by two orders of magnitude. On the basis of this conversion method, some embodiments provide a partial access mode to reduce power consumption dynamically when the full memory capacity is not required.
    Type: Application
    Filed: January 30, 2014
    Publication date: May 28, 2015
    Applicant: Elpida Memory, Inc.
    Inventor: Yoshiro RIHO
  • Patent number: 9012298
    Abstract: A method for reducing the leakage current in DRAM Metal-Insulator-Metal capacitors includes forming a flash layer between the dielectric layer and the first electrode layer. A method for reducing the leakage current in DRAM Metal-Insulator-Metal capacitors includes forming a capping layer between the dielectric layer and the second electrode layer. The flash layer and the capping layer can be formed using an atomic layer deposition (ALD) technique. The precursor materials used for forming the flash layer and the capping layer are selected such they include at least one metal-oxygen bond. Additionally, the precursor materials are selected to also include “bulky” ligands.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: April 21, 2015
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Sandra G. Malhotra, Hiroyuki Ode, Xiangxin Rui
  • Publication number: 20150087130
    Abstract: A method for forming a capacitor stack includes forming a first bottom electrode layer including a conductive metal nitride material. A second bottom electrode layer is formed above the first bottom electrode layer. The second bottom electrode layer includes a conductive metal oxide material, wherein the crystal structure of the conductive metal oxide material promotes a desired high-k crystal phase of a subsequently deposited dielectric layer. A dielectric layer is formed above the second bottom electrode layer. Optionally, an oxygen-rich metal oxide layer is formed above the dielectric layer. Optionally, a third top electrode layer is formed above the oxygen-rich metal oxide layer. The third top electrode layer includes a conductive metal oxide material. A fourth top electrode layer is formed above the third top electrode layer. The fourth top electrode layer includes a conductive metal nitride material.
    Type: Application
    Filed: September 20, 2013
    Publication date: March 26, 2015
    Applicants: Elpida Memory, Inc, Intermolecular, Inc.
    Inventors: Hanhong Chen, David Chi, Imran Hashim, Mitsuhiro Horikawa, Sandra G. Malhotra
  • Patent number: 8980744
    Abstract: This disclosure provides a method of fabricating a semiconductor stack and associated device, such as a capacitor and DRAM cell. In particular, a bottom electrode has a material selected for lattice matching characteristics. This material may be created from a relatively inexpensive metal oxide which is processed to adopt a conductive, but difficult-to-produce oxide state, with specific crystalline form; to provide one example, specific materials are disclosed that are compatible with the growth of rutile phase titanium dioxide (TiO2) for use as a dielectric, thereby leading to predictable and reproducible higher dielectric constant and lower effective oxide thickness and, thus, greater part density at lower cost.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: March 17, 2015
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Hanhong Chen, Toshiyuki Hirota, Pragati Kumar, Xiangxin Rui, Sunil Shanker
  • Patent number: 8975147
    Abstract: This disclosure provides a method of fabricating a semiconductor stack and associated device, such as a capacitor and DRAM cell. In particular, a bottom electrode has a material selected for lattice matching characteristics. This material may be created from a relatively inexpensive metal oxide which is processed to adopt a conductive, but difficult-to-produce oxide state, with specific crystalline form; to provide one example, specific materials are disclosed that are compatible with the growth of rutile phase titanium dioxide (TiO2) for use as a dielectric, thereby leading to predictable and reproducible higher dielectric constant and lower effective oxide thickness and, thus, greater part density at lower cost.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: March 10, 2015
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Xiangxin Rui, Hanhong Chen, Pragati Kumar, Sandra G. Malhotra
  • Patent number: 8975633
    Abstract: A metal oxide bilayer second electrode for a MIM DRAM capacitor is formed wherein the layer of the electrode that is in contact with the dielectric layer (i.e. bottom layer) has a desired composition and crystal structure. An example is crystalline MoO2 if the dielectric layer is TiO2 in the rutile phase. The other component of the bilayer (i.e. top layer) is a sub-oxide of the same material as the bottom layer. The top layer serves to protect the bottom layer from oxidation during subsequent PMA or other DRAM fabrication steps by reacting with any oxygen species before they can reach the bottom layer of the bilayer second electrode.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: March 10, 2015
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Hanhong Chen, Wim Y. Deweerd, Hiroyuki Ode
  • Patent number: 8910375
    Abstract: The purpose of the invention is to provide a mounting apparatus that can mount a part such as a chip, etc. on a substrate effectively and precisely. A wafer is placed on the upper surface of turntable, which has opening section, and a backup section and a head section that hold a chip are lifted up and lowered respectively, at opening section. The wafer and the chip are contacted, pinched and held locally, and then they are heat-bonded. After that, the backup section and the head section are removed. Lift arms equipped on a holding table are inserted between the wafer and turntable, the wafer is lifted up, and opening section is moved relative to the wafer when turntable is rotated. The wafer is placed on turntable again and the bonding process is performed.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: December 16, 2014
    Assignees: Adwelds Corporation, Elpida Memory, Inc.
    Inventors: Seiya Nakai, Shinichi Sakurada
  • Patent number: 8906812
    Abstract: A method of removing non-noble metal oxides from material (e.g., semiconductor material) used to make a microelectronic device includes providing the material comprising traces of the conducting non-noble metal oxides; applying a chemical mixture (or chemical solution) to the material; removing the traces of the non-noble metal oxides from the material; and removing the chemical mixture from the material. The non-noble metal oxides comprise MoOx, wherein x is a positive number between 0 and 3. The chemical solution comprises any one of HNO3-based chemicals, H2SO4-based chemicals, HCl-based chemicals, or NH4OH-based chemicals.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: December 9, 2014
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Wim Deweerd, Kim Van Berkel, Hiroyuki Ode
  • Patent number: 8900422
    Abstract: This disclosure provides (a) methods of making an oxide layer (e.g., a dielectric layer) based on yttrium and titanium, to have a high dielectric constant and low leakage characteristic and (b) related devices and structures. An oxide layer having both yttrium and titanium may be fabricated either as an amorphous oxide or as an alternating series of monolayers. In several embodiments, the oxide is characterized by a yttrium contribution to total metal that is specifically controlled. The oxide layer can be produced as the result of a reactive process, if desired, via either a PVD process or, alternatively, via an atomic layer deposition process that employs specific precursor materials to allow for a common process temperature window for both titanium and yttrium reactions.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: December 2, 2014
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Imran Hashim, Indranil De, Tony Chiang, Edward Haywood, Hanhong Chen, Nobi Fuchigami, Pragati Kumar, Sandra Malhotra, Sunil Shanker
  • Patent number: 8900418
    Abstract: This disclosure provides (a) methods of making an oxide layer (e.g., a dielectric layer) based on yttrium and titanium, to have a high dielectric constant and low leakage characteristic and (b) related devices and structures. An oxide layer having both yttrium and titanium may be fabricated either as an amorphous oxide or as an alternating series of monolayers. In several embodiments, the oxide is characterized by a yttrium contribution to total metal that is specifically controlled. The oxide layer can be produced as the result of a reactive process, if desired, via either a PVD process or, alternatively, via an atomic layer deposition process that employs specific precursor materials to allow for a common process temperature window for both titanium and yttrium reactions.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: December 2, 2014
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Imran Hashim, Hanhong Chen, Tony Chiang, Indranil De, Nobi Fuchigami, Edward Haywood, Pragati Kumar, Sandra Malhotra, Sunil Shanker
  • Patent number: 8853049
    Abstract: A method for forming a DRAM MIM capacitor stack having low leakage current and low EOT involves the use of a first electrode that serves as a template for promoting the high k phase of a subsequently deposited first dielectric layer. The first high k dielectric layer comprises a doped material that can be crystallized after a subsequent annealing treatment. An amorphous, doped high k second dielectric material is form on the first dielectric layer. The dopant concentration and the thickness of the second dielectric layer are chosen such that the second dielectric layer remains amorphous after a subsequent annealing treatment. A second electrode layer compatible with the second dielectric layer is formed on the second dielectric layer.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: October 7, 2014
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Wim Deweerd, Hanhong Chen, Hiroyuki Ode, Xiangxin Rui
  • Patent number: 8846468
    Abstract: A method for reducing the leakage current in DRAM Metal-Insulator-Metal capacitors includes forming a capacitor stack including an oxygen donor dopant incorporated within the dielectric layer. The oxygen donor dopants may be incorporated within the dielectric layer during the formation of the dielectric layer. The oxygen donor materials provide oxygen to the dielectric layer and reduce the concentration of oxygen vacancies, thus reducing the leakage current.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: September 30, 2014
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Xiangxin Rui, Sergey Barabash
  • Patent number: 8835273
    Abstract: A first electrode layer for a Metal-Insulator-Metal (MIM) DRAM capacitor is formed wherein the first electrode layer contains a conductive metal oxide formed using a high temperature, low pressure ALD process. The high temperature ALD process results in a layer with enhanced crystallinity, higher density, reduced shrinkage, and lower carbon contamination. The high temperature ALD process can be used for either or both the bottom electrode and the top electrode layers.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: September 16, 2014
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Hanhong Chen, Edward L Haywood, Sandra G Malhotra, Hiroyuki Ode