Patents Assigned to Elpida Memory, Inc.
  • Patent number: 8828821
    Abstract: This disclosure provides a method of fabricating a semiconductor stack and associated device such as a capacitor and DRAM cell. In particular, a bottom electrode upon which a dielectric layer is to be grown may have a ruthenium-based surface. Lattice matching of the ruthenium surface with the dielectric layer (e.g., titanium oxide, strontium titanate or barium strontium titanate) helps promote the growth of rutile-phase titanium oxide, thereby leading to higher dielectric constant and lower effective oxide thickness. The ruthenium-based material also provides a high work function material, leading to lower leakage. To mitigate nucleation delay associated with the use of ruthenium, an adherence or glue layer based in titanium may be employed. A pretreatment process may be further employed so as to increase effective capacitor plate area, and thus promote even further improvements in dielectric constant and effective oxide thickness (“EOT”).
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: September 9, 2014
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Hanhong Chen, Nobumichi Fuchigami, Imran Hashim, Pragati Kumar, Sandra Malhotra, Sunil Shanker
  • Patent number: 8828836
    Abstract: A method for fabricating a dynamic random access memory (DRAM) capacitor stack is disclosed wherein the stack includes a first electrode, a dielectric layer, and a second electrode. The first electrode is formed from a conductive binary metal. A dielectric layer is formed over the first electrode. The dielectric layer is subjected to a milliseconds anneal process that serves to crystallize the dielectric material and decrease the concentration of oxygen vacancies.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: September 9, 2014
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Karthik Ramani, Hiroyuki Ode, Sandra Malhotra
  • Publication number: 20140246780
    Abstract: A semiconductor device includes a substrate including a circuit region, a dummy region, and a dummy clearance section surrounding the circuit region, and a plurality of dummy patterns formed in the dummy region, the plurality of dummy patterns comprising a first dummy pattern and a second dummy pattern, a distance between the first dummy pattern and the circuit region being less than a distance between the second dummy pattern and the circuit region, and a dummy pattern being absent between the first dummy pattern and the circuit region. The first dummy pattern includes an area which is greater than an area of the second dummy pattern.
    Type: Application
    Filed: May 20, 2014
    Publication date: September 4, 2014
    Applicant: Elpida Memory, Inc.
    Inventor: Yorio TAKADA
  • Publication number: 20140241059
    Abstract: A method (and device) includes producing first data in a page region of a memory, the first data including a first number of memory sets, each of the memory sets having a second number of bits, where the first number is a positive number more than one and the second number is a positive number more than three. After the producing the first data in the page region of the memory, second data is produced in response to the produced first data, the second data having the first number of bits, each of the bits of the second data having a logic value that is determined by a majority of the bits included in a corresponding one of the memory sets.
    Type: Application
    Filed: February 22, 2013
    Publication date: August 28, 2014
    Applicant: Elpida Memory, Inc.
    Inventors: Giulio Martinozzi, Stefano Sivero
  • Patent number: 8817525
    Abstract: A semiconductor memory device includes a memory cell array having a plurality of memory cells arranged in a matrix, each memory cell being configured such that a variable resistance element and a selection transistor are connected in series. A set operation for a memory cell (an operation of converting the resistance of the variable resistance element to a low resistance) is performed by applying a set voltage pulse for a longer time than that for a reset operation (an operation of converting the resistance of the variable resistance element to a high resistance) while limiting, using the selection transistor, an electric current flowing in the set operation to a certain low electric current, and by simultaneously applying the set voltage pulse to the plurality of memory cells.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: August 26, 2014
    Assignees: Sharp Kabushiki Kaisha, Elpida Memory, Inc.
    Inventors: Kazuya Ishihara, Yukio Tamai, Takashi Nakano, Akiyoshi Seko
  • Patent number: 8815677
    Abstract: A method for processing dielectric materials and electrodes to decrease leakage current is disclosed. The method includes a post dielectric anneal treatment in an oxidizing atmosphere to reduce the concentration of oxygen vacancies in the dielectric material. The method further includes a post metallization anneal treatment in an oxidizing atmosphere to reduce the concentration of interface states at the electrode/dielectric interface and to further reduce the concentration of oxygen vacancies in the dielectric material.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: August 26, 2014
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Hanhong Chen, Wim Deweerd, Xiangxin Rui, Sandra Malhotra, Hiroyuki Ode
  • Patent number: 8813325
    Abstract: A method for fabricating a dynamic random access memory (DRAM) capacitor stack is disclosed wherein the stack includes a first electrode, a dielectric layer, and a second electrode. The first electrode is formed from a conductive binary metal compound and the conductive binary metal compound is annealed in a reducing atmosphere to promote the formation of a desired crystal structure. The binary metal compound may be a metal oxide. Annealing the metal oxide (i.e. molybdenum oxide) in a reducing atmosphere may result in the formation of a first electrode material (i.e. MoO2) with a rutile-phase crystal structure. This facilitates the formation of the rutile-phase crystal structure when TiO2 is used as the dielectric layer. The rutile-phase of TiO2 has a higher k value than the other possible crystal structures of TiO2 resulting in improved performance of the DRAM capacitor.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: August 26, 2014
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Karthik Ramani, Nobumichi Fuchigami, Wim Deweerd, Hanhong Chen, Hiroyuki Ode
  • Patent number: 8815695
    Abstract: A first electrode layer for a Metal-Insulator-Metal (MIM) DRAM capacitor is formed wherein the first electrode layer contains a conductive base layer and conductive metal oxide layer. A second electrode layer for a Metal-Insulator-Metal (MIM) DRAM capacitor is formed wherein the second electrode layer contains a conductive base layer and conductive metal oxide layer. In some embodiments, both the first electrode layer and the second electrode layer contain a conductive base layer and conductive metal oxide layer.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: August 26, 2014
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Xiangxin Rui, Mitsuhiro Horikawa, Hiroyuki Ode, Karthik Ramani
  • Publication number: 20140233335
    Abstract: A plurality of memory chips each have an alert terminal that notifies the outside that the memory chip has detected a predetermined error. The plurality of memory chips are mounted on memory module 100. Memory module 100 has a first transmission line connected to an alert terminal of each of the plurality of memory chips, output terminal 101 being connected to one end of the first transmission line, and a first termination resistor being connected to another end of the first transmission line.
    Type: Application
    Filed: January 31, 2014
    Publication date: August 21, 2014
    Applicant: Elpida Memory, Inc.
    Inventors: Yoji NISHIO, Tadaaki Yoshimura, Koji Matsuo
  • Publication number: 20140231959
    Abstract: A semiconductor device includes a first storage electrode, a second storage electrode that is arranged above the first storage electrode, a first landing pad that is arranged between a top surface of the first storage electrode and a bottom surface of the second storage electrode, the first landing pad connecting the first storage electrode and the second storage electrode, the first landing pad having a first landing surface, the first landing surface being larger than the bottom surface of the second storage electrode, and the second storage electrode being placed on the first landing surface, a capacitive insulating film that is laminated on the first and second storage electrodes and on an outer circumferential surface of the first landing pad, and a plate electrode that contacts the capacitive insulating film.
    Type: Application
    Filed: April 29, 2014
    Publication date: August 21, 2014
    Applicant: Elpida Memory, Inc.
    Inventor: Takashi MIYAJIMA
  • Publication number: 20140233334
    Abstract: A device includes a command decoder that is configured to output, in a normal operation mode, a precharge signal in response to a first type transition edge of a synchronous signal, and an active signal in response to a next first type transition edge that is next to the first type transition edge. The command decoder is configured to output, in a test mode, the precharge signal in response to a second type transition edge of the synchronous signal, and the active signal in response to a next first type transition edge that is next to the second type transition edge.
    Type: Application
    Filed: April 28, 2014
    Publication date: August 21, 2014
    Applicant: Elpida Memory, Inc.
    Inventors: Kinu MATSUNAGA, Hiroshi AKAMATSU
  • Publication number: 20140232438
    Abstract: A semiconductor device includes a first input terminal configured to receive a first clock signal, first control terminals configured to receive first control signals respectively, an output terminal, first inverters each including an input node coupled to the first input terminal, a control node coupled to a corresponding one of the first control terminals and an output node coupled to the output terminal, each of the first inverters being configured to be controlled to output an inverted first clock signal to the output terminal in response to a corresponding one of the first control signals supplied to a corresponding one of the control nodes, and an additional first inverter including an input node coupled to the first input terminal and an output node coupled to the output terminal, the additional first inverter being free from any other control nodes to output an inverted first clock signal to the output terminal.
    Type: Application
    Filed: January 31, 2014
    Publication date: August 21, 2014
    Applicant: ELPIDA MEMORY, INC.
    Inventors: Kazutaka Miyano, Ryuji Takishita, Takeshi Konno
  • Patent number: 8809160
    Abstract: This disclosure provides a method of fabricating a semiconductor stack and associated device, such as a capacitor or DRAM cell. In such a device, a high-K zirconia-based layer may be used as the primary dielectric together with a relatively inexpensive metal electrode based on titanium nitride. To prevent corruption of the electrode during device formation, a thin barrier layer can be used seal the electrode prior to the use of a high temperature process and a (high-concentration or dosage) ozone reagent (i.e., to create a high-K zirconia-based layer). In some embodiments, the barrier layer can also be zirconia-based, for example, a thin layer of doped or un-doped amorphous zirconia. Fabrication of a device in this manner facilitates formation of a device with dielectric constant of greater than 40 based on zirconia and titanium nitride, and generally helps produce less costly, increasingly dense DRAM cells and other semiconductor structures.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: August 19, 2014
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Hanhong Chen, Edward Haywood, Pragati Kumar, Sandra G Malhotra, Xiangxin Rui
  • Publication number: 20140226428
    Abstract: A system includes a control chip includes a plurality of command terminals receiving a plurality of command signals, respectively; a command decoder coupled to the command terminals, the command decoder being configured to output an internal command in response to the command signals; and a layer address buffer configured to output a layer address each time the command decoder outputs a row command as the internal command and outputs a column command as the internal command; and a plurality of core chips stacked with one another, each of the core chips being configured to receive the, row command and the layer address output together with the row command, to receive the column command and the layer address output together with the column command.
    Type: Application
    Filed: April 18, 2014
    Publication date: August 14, 2014
    Applicant: Elpida Memory, Inc.
    Inventor: Akira IDE
  • Publication number: 20140227855
    Abstract: Disclosed herein is a semiconductor device that includes a trench formed across active regions and the element isolation regions. A conductive film is formed at a lower portion of the trench, and a cap insulating film is formed at an upper portion of the trench. The cap insulating film has substantially the same planer shape as that of the conductive film.
    Type: Application
    Filed: April 22, 2014
    Publication date: August 14, 2014
    Applicant: Elpida Memory, Inc.
    Inventor: Wu NAN
  • Publication number: 20140226423
    Abstract: Provided is a device, including: a first terminal which receives an external clock signal; a clock generation circuit connected to the first terminal to generate an internal clock signal based on the external clock signal; word lines and bit lines; amplifier circuits connected to the bit lines, respectively; and a control unit. The control unit controls, in a test operation, at least one of the word lines to repeat a selected state and an unselected state in accordance with the internal clock signal during a first period, and maintains the amplifier circuits in an active state during the first period. The control unit further controls, in a normal operation, the amplifier circuits to switch between the active state and an inactive state depending on switching between the selected state and the unselected state of the at least one of the word lines.
    Type: Application
    Filed: April 18, 2014
    Publication date: August 14, 2014
    Applicant: Elpida Memory, Inc.
    Inventors: Hiroshi AKAMATSU, Shoji Kaneko
  • Publication number: 20140217560
    Abstract: A semiconductor device includes a semiconductor substrate having a first surface, a through silicon via (TSV) that is formed so that at least a part thereof penetrates through the semiconductor substrate, and an insulation ring. The insulation ring is formed so as to penetrate through the semiconductor substrate and so as to surround the TSV. The insulation ring includes a tapered portion and a vertical portion. The tapered portion has a sectional area which is gradually decreased from the first surface toward a thickness direction of the semiconductor substrate. The vertical portion has a constant sectional area smaller than the tapered portion.
    Type: Application
    Filed: January 22, 2014
    Publication date: August 7, 2014
    Applicant: Elpida Memory, Inc.
    Inventor: Osamu FUJITA
  • Publication number: 20140211545
    Abstract: A semiconductor device includes an equalizing circuit and a control circuit. The equalizing circuit executes an operation of pre-charging the signal input/output line pair used for data inputting/outputting and an operation of equalizing it independently of each other. In case a plurality of data write operations occur in succession, the control circuit halts pre-charge control in the equalizing circuit in the course of consecutive write operations.
    Type: Application
    Filed: January 28, 2014
    Publication date: July 31, 2014
    Applicant: Elpida Memory, Inc.
    Inventors: Kyoichi NAGATA, Yuuji Motoyama
  • Publication number: 20140204692
    Abstract: A semiconductor memory device includes an I/O line for transmitting read data that has been read from a memory cell, a plurality of driver circuits for driving the I/O line on the basis of the read data, a read circuit for receiving the read data transmitted through the I/O line, and an assist circuit for amplifying the read data transmitted through the I/O line. The assist circuit is disposed farther away from a prescribed drive circuit included in the plurality of drive circuits as viewed from the read circuit. The signal level can thereby rapidly change levels even in memories having relatively long I/O lines.
    Type: Application
    Filed: March 20, 2014
    Publication date: July 24, 2014
    Applicant: Elpida Memory, Inc.
    Inventors: Shetti Shanmukheshwara Rao, Ankur GOEl
  • Patent number: 8787068
    Abstract: A semiconductor device includes first and second interconnects, a variable resistance element that may assume a first resistance value or a second resistance value in response to the current flowing therein, first and second transistors connected between the first and second interconnects in series with each other on both sides of the variable resistance element, and a power supply circuit unit that delivers the power supply to a control electrode of the first transistor. The power supply circuit unit supplies the power of a first power supply when the variable resistance element is to make transition to the first resistance value and the power supply circuit unit supplies the power of a second power supply when the variable resistance element is to make transition to the second resistance value, thereby allowing transitioning of the resistance values of the variable resistance element.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: July 22, 2014
    Assignee: Elpida Memory, Inc.
    Inventors: Akiyoshi Seko, Tatsuya Matano