Patents Assigned to FEI Company
  • Patent number: 11651924
    Abstract: Methods of producing microrods for electron emitters and associated microrods and electron emitters. In one example, a method of producing a microrod for an electron emitter comprises providing a bulk crystal ingot, removing a first plate from the bulk crystal ingot, reducing a thickness of the first plate to produce a second plate, and milling the second plate to produce one or more microrods. In another example, a microrod for an electron emitter comprises a microrod tip region that comprises a nanoneedle that in turn comprises a nanorod and a nanoprotrusion tip. The microrod and the nanoneedle are integrally formed from a bulk crystal ingot by sequentially: (i) removing the microrod from the bulk crystal ingot; (ii) coarse processing the microrod tip region to produce the nanorod; and (iii) fine processing the nanorod to produce the nanoprotrusion tip.
    Type: Grant
    Filed: June 22, 2022
    Date of Patent: May 16, 2023
    Assignee: FEI Company
    Inventors: Kun Liu, Chad Rue, Alan Stephen Bahm
  • Patent number: 11650171
    Abstract: Methods and apparatus determine offcut angle of a crystalline sample using electron channeling patterns (ECPs), wherein backscattered electron intensity exhibits angular variation dependent on crystal orientation. A zone axis normal to a given crystal plane follows a circle as the sample is azimuthally rotated. On an ECP image presented with tilt angles as axes, the radius of the circle is the offcut angle of the sample. Large offcut angles are determined by a tilt technique that brings the zone axis into the ECP field of view. ECPs are produced with a scanning electron beam and a monolithic backscattered electron detector; or alternatively with a stationary electron beam and a pixelated electron backscatter diffraction detector. Applications include strain engineering, process monitoring, detecting spatial variations, and incoming wafer inspection. Methods are 40× faster than X-ray diffraction. 0.01-0.1° accuracy enables semiconductor applications.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: May 16, 2023
    Assignee: FEI Company
    Inventors: Han Han, Libor Strakos, Thomas Hantschel, Tomas Vystavel, Clement Porret
  • Publication number: 20230132874
    Abstract: Air sensitive sample may be transferred between charged particle instruments or between charged particle instrument and a glove box using a sample transfer system. The sample transfer system includes a transfer shuttle for receiving a sample carrier and a transfer rod detachable coupled to the transfer shuttle. The transfer rod moves the sample carrier into or out of the transfer shuttle.
    Type: Application
    Filed: January 25, 2022
    Publication date: May 4, 2023
    Applicant: FEI Company
    Inventors: Krishna Kanth NEELISETTY, Milos TRENZ, Jindrich VONDRUSKA, Jakub STETINA
  • Publication number: 20230120177
    Abstract: A method of producing a compensation signal to compensate for misalignment of a drive unit clamp element can include applying a clamp element drive signal to a drive unit clamp element to engage a mover element, determining a first displacement of the mover element, and determining a first compensation signal based at least in part on the first displacement. The method can further comprise applying the first compensation signal to the drive unit shear elements and the clamp element drive signal to the drive unit clamp element and determining a second displacement of the mover element. If the second displacement is less than a preselected threshold, the first compensation signal can be combined with an initial shear element drive signal to produce a modified shear element drive signal. If the second displacement is greater than the preselected threshold, a second compensation signal can be determined.
    Type: Application
    Filed: December 19, 2022
    Publication date: April 20, 2023
    Applicant: FEI Company
    Inventors: Edwin Verschueren, Paul Tacx
  • Publication number: 20230101108
    Abstract: An electron optical module for providing an off-axial electron beam with a tunable coma, according to the present disclosure includes a structure positioned downstream of an electron source and an electron lens assembly positioned between the structure and the electron source. The structure generates a decelerating electric field, and is positioned to prevent the passage of electrons along the optical axis of the electron lens assembly. The electron optical module further includes a micro-lens that is not positioned on the optical axis of the electron lens assembly and is configured to apply a lensing effect to an off-axial election beam. Aberrations applied to the off-axial electron beam by the micro-lens and the electron lens assembly combine so that a coma of the off-axial beam has a desired value in a downstream plane.
    Type: Application
    Filed: September 30, 2021
    Publication date: March 30, 2023
    Applicant: FEI Company
    Inventors: Ali MOHAMMADI-GHEIDARI, Peter Christiaan TIEMEIJER, Alexander HENSTRA, Tomas RADLICKA
  • Publication number: 20230095798
    Abstract: Methods and systems for imaging a sample with a charged particle microscope comprises after scanning a region of interest (ROI) of a sample with an electron beam and acquiring X-rays emitted from the sample, scanning the ROI with an ion beam and acquiring ion-induced photons emitted from the sample. A spatial distribution of multiple elements in the sample may be determined based on both the acquired X-rays and the acquired ion-induced photons.
    Type: Application
    Filed: September 30, 2021
    Publication date: March 30, 2023
    Applicant: FEI Company
    Inventors: Garrett BUDNIK, Chengge JIAO, Mostafa MAAZOUZ, Suzanna OFFICER, Galen Gledhill, Chad Rue
  • Publication number: 20230101676
    Abstract: A positioning system can include a drive unit having an actuator element and a control system. The actuator element can include a piezoelectric material. The control system can be configured to select a path between a first position and a second position, identify at least one change of direction of the actuator element along the selected path, generate a hysteresis-compensated drive signal based at least in part on the change in direction, and apply the hysteresis-compensated drive signal to the actuator element to move an object along the path.
    Type: Application
    Filed: November 29, 2022
    Publication date: March 30, 2023
    Applicant: FEI Company
    Inventors: Edwin Verschueren, Paul Tacx
  • Publication number: 20230099947
    Abstract: Disclosed herein are charged particle microscopy (CPM) support systems, as well as related methods, computing devices, and computer-readable media. For example, in some embodiments, a CPM support apparatus may include: first logic to cause a CPM to generate a single image of a first portion of a specimen; second logic to generate a first mask based on one or more regions-of-interest provided by user annotation of the single image; and third logic to train a machine-learning model using the single image and the one or more regions-of-interest. The first logic may cause the CPM to generate multiple images of corresponding multiple additional portions of the specimen, and the second logic may, after the machine-learning model is trained using the single image and the one or more regions-of-interest, generate multiple masks based on the corresponding images of the additional portions of the specimen using the machine-learning model without retraining.
    Type: Application
    Filed: September 30, 2021
    Publication date: March 30, 2023
    Applicant: FEI Company
    Inventors: Ondrej MACHEK, Pavel POTOCEK, Tereza KONECNÁ
  • Publication number: 20230101644
    Abstract: A modular ultra-high vacuum (UHV) electron microscope for investigating a sample, according to the present disclosure includes a UHV chamber configured to reach and maintain an ultra-high vacuum within the UHV chamber, a UHV stage to hold the sample being investigated, a charged particle source configured to emit an electron beam toward the sample, and an optical column configured to direct the plurality of electrons to be incident on the sample. The modular UHV electron microscopes further include a carousel vacuum bay configured to reach and maintain an UHV independently of the UHV chamber, and which is connected to the UHV chamber via a port and contains at least one device manipulator. Each of the device manipulators comprise an attachment site for a microscope device, and are configured to, selectively translate attached microscope devices between the carousel vacuum bay and the UHV chamber via the valve.
    Type: Application
    Filed: September 30, 2022
    Publication date: March 30, 2023
    Applicant: FEI Company
    Inventors: Rudolf GEURINK, Hugo Cornelis VAN LEEUWEN
  • Publication number: 20230101787
    Abstract: Electron sources can include an electron source crystal coupled in series between opposing electrically conductive supports to form an electrically conductive path, wherein the electrical resistance of each of the electrically conductive supports is lower than the electrical resistance of the electron source crystal. Electron source crystals can include an emitting end and opposing shank end, wherein the shank end includes opposing leg portions. Electrically conductive supports can include foil supports spaced apart across a gap, wherein each of the opposing leg portions is attached to a respective foil support such that the foil supports are electrically connected to form the electrically conductive path. Particle focusing system are also disclosed. Electron sources can include an electron source crystal having an emitting end and opposing shank end, wherein the shank end is formed of a pair of opposing leg portions. Methods of manufacturing and operating electron sources are also disclosed.
    Type: Application
    Filed: September 30, 2021
    Publication date: March 30, 2023
    Applicant: FEI Company
    Inventors: John Stiller, Aaron Torok, Kevin Kagarice
  • Publication number: 20230103037
    Abstract: Methods and systems for generation and use of an accelerated tomographic reconstruction preconditioner (ATRP) for accelerated iterative tomographic reconstruction are disclosed. An example method for generating an ATRP for accelerated iterative tomographic reconstruction includes accessing data for a tomography investigation of a sample and determining a trajectory of the tomography investigation of a sample. At least one toy model sample depicting a feature characteristic of the sample are accessed and at least one candidate preconditioner is selected. A first performance of each of the at least one candidate preconditioner on the one or more toy samples is determined, where the candidate preconditioners are then updated to create updated candidate preconditioners. A second performance of each of the updated candidate preconditioners on the one or more toy samples is determined determining. An ATRP is then generated based on at least the first performance and the second performance.
    Type: Application
    Filed: September 30, 2022
    Publication date: March 30, 2023
    Applicant: FEI Company
    Inventors: Glenn Myers, Andrew Kingston, Adrian Sheppard, Shane Latham, Trond Varslot
  • Publication number: 20230093535
    Abstract: Apparatuses and methods for automated grid validation are disclosed herein. An example method at least includes imaging a grid, the grid including a support portion and a plurality of posts extending from the support portion, wherein each post of the plurality of posts has a designated weld location, and determining, based on the image, whether the designated weld location of each post of the plurality of posts is valid.
    Type: Application
    Filed: September 20, 2022
    Publication date: March 23, 2023
    Applicant: FEI Company
    Inventors: Pavol KARLÍK, Luká{hacek over (s)} HUBNER, Dennis VYMER, Iris KICO
  • Patent number: 11605525
    Abstract: Described herein are a system and method of preparing integrated circuits (ICs) so that the ICs remain electrically active and can have their active circuitry probed for diagnostic and characterization purposes using charged particle beams. The system employs an infrared camera capable of looking through the silicon substrate of the ICs to image electrical circuits therein, a focused ion beam system that can both image the IC and selectively remove substrate material from the IC, a scanning electron microscope that can both image structures on the IC and measure voltage contrast signals from active circuits on the IC, and a means of extracting heat generated by the active IC. The method uses the system to identify the region of the IC to be probed, and to selectively remove all substrate material over the region to be probed using ion bombardment, and further identifies endpoint detection means of milling to the required depth so as to observe electrical states and waveforms on the active IC.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: March 14, 2023
    Assignee: FEI Company
    Inventors: James Vickers, Seema Somani, Cecelia Campochiaro, Yakov Bobrov
  • Patent number: 11598733
    Abstract: The invention relates to a method of examining a sample using a charged particle microscope, comprising the steps of providing a charged particle beam, as well as a sample; scanning said charged particle beam over said sample; and detecting, using a first detector, emissions of a first type from the sample in response to the beam scanned over the sample. Spectral information of detected emissions of the first type is used for assigning a plurality of mutually different phases to said sample. In a further step, a corresponding plurality of different color hues—with reference to an HSV color space—are associated to said plurality of mutually different phases. Using a second detector, emissions of a second type from the sample in response to the beam scanned over the sample are detected. Finally an image representation of said sample is provided.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: March 7, 2023
    Assignee: FEI Company
    Inventors: Tomas Tûma, Jan Klusá{hacek over (c)}ek, Jiri Petrek
  • Patent number: 11587759
    Abstract: The invention relates to a method for electron microscopy. The method comprises providing an electron microscope, generating an electron beam and an image beam, adjusting one of the beam and of the beam and the image beam to reduce off-axial aberrations and correcting a diffraction pattern of the resulting modified beam. The invention also relates to a method for reducing throughput time in a sample image acquisition session in transmission electron microscopy. The method comprises providing an electron microscope, generating a beam and an image beam, adjusting one of the two to reduce off-axial aberrations and filtering the resulting modified image beam. The invention further relates to an electron microscope and to a non-transient computer-readable medium with a computer program for carrying out the methods.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: February 21, 2023
    Assignee: FEI Company
    Inventors: Maarten Bischoff, Peter Christiaan Tiemeijer, Tjerk Gerrit Spanjer, Stan Johan Pieter Konings
  • Patent number: 11587762
    Abstract: The invention relates to a device and method for determining a property of a sample that is to be used in a charged particle microscope. The sample comprises a specimen embedded within a matrix layer. The device comprises a light source arranged for directing a beam of light towards said sample, and a detector arranged for detecting light emitted from said sample in response to said beam of light being incident on said sample. Finally, the device comprises a controller that is connected to said detector and arranged for determining a property of said matrix layer based on signals received by said detector.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: February 21, 2023
    Assignee: FEI Company
    Inventors: Maarten Kuijper, Matthijn Robert-Jan Vos, Ondrej Ludmil Shànël, Peet Goedendorp
  • Publication number: 20230040961
    Abstract: Electrostatic discharge (ESD) test systems include a FET-based pulse generator using pairs of back-to-back FETs coupled to produce an ESD pulse based on discharging a capacitor that is coupled in series with a device under test (DUT). A number of FETs can be selected based on an intended ESD test voltage magnitude.
    Type: Application
    Filed: August 4, 2021
    Publication date: February 9, 2023
    Applicant: FEI Company
    Inventor: Marcos Hernandez
  • Publication number: 20230040558
    Abstract: Systems and methods for reducing the buildup of charge during the investigation of samples using charged particle beams, according to the present disclosure include irradiating a first portion of a sample during a first time period, wherein the irradiating the first portion of the sample causes a gradual accumulation of net charge in the first portion of the sample, generating imaging data based on emissions resultant from irradiating the first portion of the sample, and then irradiating a second portion of a sample holder for a second time period. The methods may further includes iteratively repeating the irradiation of the first portion and the second portion during imaging of the sample region. When more than one region of interest on the sample is to be investigated, the method may also include continuing to image additional portions of the sample by iteratively irradiating a region of interest on the sample and a corresponding portion of the sample holder.
    Type: Application
    Filed: August 3, 2021
    Publication date: February 9, 2023
    Applicant: FEI Company
    Inventors: Yuchen Deng, Alexander Henstra, Peter Tiemeijer
  • Patent number: 11574794
    Abstract: Methods include holding a sample with a movement stage configured to rotate the sample about a rotation axis, directing an imaging beam to a first sample location with the sample at a first rotational position about the rotation axis and detecting a first transmitted imaging beam image, rotating the sample using the movement stage about the rotation axis to a second rotational position, and directing the imaging beam to a second sample location by deflecting the imaging beam in relation to an optical axis of the imaging beam and detecting a second transmitted imaging beam image, wherein the second sample location is spaced apart from the first sample location at least at least in relation to the optical axis. Related systems and apparatus are also disclosed.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: February 7, 2023
    Assignee: FEI Company
    Inventors: Ond{hacek over (r)}ej L. Shán{hacek over (e)}l, Trond Karsten Varslot, Ond{hacek over (r)}ej R. Ba{hacek over (c)}o, Martin Schneider
  • Patent number: 11574802
    Abstract: A mass spectrometer comprises an interface for receiving an ion beam from an ion source, a mass analyzer unit for selecting from the received ion beam, in two or more time periods, ions having different ranges of mass-to-charge ratios, a first detection unit for detecting, in each of said time period, ions within a selected range and producing first detection signals representative of quantities of detected ions having respective mass-to-charge ratios, and a second detection unit arranged between the interface and the mass analyzer unit for producing a second detection signal representative of a total intensity of the ion beam received from the ion source as a function of time. The mass spectrometer further comprises a processing unit for normalizing the first detection signals by using the second detection signal, which processing unit may output a ratio of normalized first detection signals.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: February 7, 2023
    Assignee: FEI Company
    Inventor: Johannes Schwieters