Patents Assigned to Fujitsu Semiconductor Limited
  • Patent number: 9390781
    Abstract: A semiconductor device includes a transistor formed on a semiconductor substrate, a first insulation film formed above the semiconductor substrate, and first and second capacitors located on the first insulation film. The first capacitor includes a lower electrode, a ferroelectric, and an upper electrode. One of the lower electrode and the upper electrode is connected to an impurity region of the transistor. The second capacitor includes a first electrode, a first dielectric, a second electrode, a second dielectric, and a third electrode. The lower electrode is formed from the same material as the first electrode, the ferroelectric is formed from the same material as the first dielectric, and the upper electrode is formed from the same material as the second electrode.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: July 12, 2016
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Osamu Matsuura
  • Patent number: 9390960
    Abstract: A method of manufacturing a semiconductor device including performing a first thermal processing a silicon substrate in a first atmosphere and at a first temperature to remove an oxide film above a surface of the silicon substrate, and after the first thermal processing, performing a second thermal processing the silicon substrate in a second atmosphere containing hydrogen and at a second temperature lower than the first temperature to terminate the surface of the silicon substrate with hydrogen.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: July 12, 2016
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Naoyoshi Tamura, Keita Nishigaya, Mitsuaki Hori, Hiroe Kawamura
  • Patent number: 9391076
    Abstract: Methods for fabricating semiconductor devices and devices therefrom are provided. A method includes providing a substrate having a semiconducting surface with first and second layers, where the semiconducting surface has a plurality of active regions comprising first and second active regions. In the first active region, the first layer is an undoped layer and the second layer is a highly doped screening layer. The method also includes removing a part of the first layer to reduce a thickness of the substantially undoped layer for at least a portion of the first active region without a corresponding thickness reduction of the first layer in the second active region. The method additionally includes forming semiconductor devices in the plurality of active regions. In the method, the part of the first layer removed is selected based on a threshold voltage adjustment required for the substrate in the portion of the first active region.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: July 12, 2016
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventors: Scott E. Thompson, Thomas Hoffmann, Lance Scudder, Urupattur C. Sridharan, Dalong Zhao, Pushkar Ranade, Michael Duane, Paul Gregory
  • Patent number: 9385121
    Abstract: An integrated circuit can include a plurality of first transistors formed in a substrate and having gate lengths of less than one micron and at least one tipless transistor formed in the substrate and having a source-drain path coupled between a circuit node and a first power supply voltage. In addition or alternatively, an integrated circuit can include minimum feature size transistors; a signal driving circuit comprising a first transistor of a first conductivity type having a source-drain path coupled between a first power supply node and an output node, and a second transistor of a second conductivity type having a source-drain path coupled between a second power supply node and the output node, and a gate coupled to a gate of the first transistor, wherein the first or second transistor is a tipless transistor.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: July 5, 2016
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventor: David A. Kidd
  • Patent number: 9385047
    Abstract: Semiconductor manufacturing processes include forming conventional channel field effect transistors (FETs) and deeply depleted channel (DDC) FETs on the same substrate and selectively forming a plurality of gate stack types where those different gate stack types are assigned to and formed in connection with one or more of a conventional channel NFET, a conventional channel PFET, a DDC-NFET, and a DDC-PFET in accordance a with a predetermined pattern.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: July 5, 2016
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventors: Dalong Zhao, Pushkar Ranade, Bruce McWilliams
  • Patent number: 9373626
    Abstract: An embodiment of a semiconductor device includes a plate line that is connected to ferroelectric capacitors selected from a plurality of ferroelectric capacitors and covers the selected ferroelectric capacitors and regions between the selected ferroelectric capacitors from above top electrodes.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: June 21, 2016
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Naoya Sashida
  • Patent number: 9373676
    Abstract: The semiconductor device has an insulation layer formed over a semiconductor substrate, a conductor plug 46 buried in the insulation layer, a capacitor formed above the insulation layer and the conductor plug and including a lower electrode formed of the first conduction film and the second conduction film formed over the first conduction film and formed of Pt, Pt alloy, Pd or Pd alloy, a capacitor dielectric film formed of a ferroelectric or a high dielectric formed over the lower electrode and an upper electrode formed over the capacitor dielectric film, the capacitor dielectric film contains a first element of Pb or Bi, and the concentration peak of the first element diffused in the lower electrode from the capacitor dielectric film positioning in the interface between the first conduction film and the second conduction film.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: June 21, 2016
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Wensheng Wang
  • Patent number: 9368624
    Abstract: A transistor and method of fabrication thereof includes a screening layer formed at least in part in the semiconductor substrate beneath a channel layer and a gate stack, the gate stack including spacer structures on either side of the gate stack. The transistor includes a shallow lightly doped drain region in the channel layer and a deeply lightly doped drain region at the depth relative to the bottom of the screening layer for reducing junction leakage current. A compensation layer may also be included to prevent loss of back gate control.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: June 14, 2016
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventors: Scott E. Thompson, Lucian Shifren, Pushkar Ranade, Yujie Liu, Sung Hwan Kim, Lingquan Wang, Dalong Zhao, Teymur Bakhishev, Thomas Hoffmann, Sameer Pradhan, Michael Duane
  • Patent number: 9368430
    Abstract: A multilayer wiring in a semiconductor device includes a first lower wiring formed in a first insulating layer, a via which is formed in a second insulating layer over the first insulating layer and which is connected to the first lower wiring, and an upper wiring connected to the via. The upper wiring has an outer edge at which a nick portion is formed beside a portion of the upper wiring to which the via is connected. The formation of the nick portion at the outer edge of the upper wiring prevents the via from enlarging.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: June 14, 2016
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Yasunori Uchino, Kenichi Watanabe
  • Patent number: 9362291
    Abstract: An integrated circuit can include multiple SRAM cells, each including at least two pull-up transistors, at least two pull-down transistors, and at least two pass-gate transistors, each of the transistors having a gate; at least one of the pull-up transistors, the pull-down transistors, or the pass-gate transistors having a screening region a distance below the gate and separated from the gate by a semiconductor layer, the screening region having a concentration of screening region dopants, the concentration of screening region dopants being higher than a concentration of dopants in the semiconductor layer, the screening region providing an enhanced body coefficient for the pull-down transistors and the pass-gate transistors to increase the read static noise margin for the SRAM cell when a bias voltage is applied to the screening region; and a bias voltage network operable to apply one or more bias voltages to the multiple SRAM cells.
    Type: Grant
    Filed: August 9, 2014
    Date of Patent: June 7, 2016
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventors: Lawrence T. Clark, Scott E. Thompson, Richard S. Roy, Robert Rogenmoser, Damodar R. Thummalapally
  • Patent number: 9349600
    Abstract: A semiconductor device manufacturing method includes: forming an element isolation insulating film in a semiconductor substrate; forming a first film on a surface of the semiconductor substrate; forming a second film on the element isolation insulating film and on the first film; forming a first resist pattern that includes a first open above the element isolation insulating film in a first region; removing the second film on the element isolation insulating film in the first region to separate the second film in the first region into a plurality of parts by performing first etching; forming a third film on the second film in the first region; forming a first gate electrode on the third film in the first region; and forming a first insulating film that includes the first to third films under the first gate electrode by patterning the first to third films.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: May 24, 2016
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Satoshi Torii, Hideaki Matsumura, Hikaru Kokura, Etsuro Kawaguchi, Katsuaki Ookoshi, Yuka Kase, Kengo Inoue
  • Patent number: 9349685
    Abstract: A semiconductor device includes a first insulating film formed above a semiconductor substrate, a fuse formed above the first insulating film, a second insulating film formed above the first insulating film and the fuse and including an opening reaching the fuse, and a third insulating film formed above the second insulating film and in the opening.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: May 24, 2016
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Shigetoshi Takeda
  • Patent number: 9337732
    Abstract: A charge and discharge signal circuit includes: high side transistors connected in series; low side transistors connected in series; high side drive circuits; low side drive circuits; and a drive signal generation circuit, wherein each drive circuit includes: a high side level shifter; a high side capacitor switch string of a capacitor and a switch element connected in series, being connected in parallel with the high side transistor; and a high side drive part, to which an output of the high side level shifter is supplied, and each of the low side drive circuits includes: a low side level shifter; a low side capacitor switch string of a capacitor and a switch element connected in series, being connected in parallel with the low side transistor; and a low side drive part, to which an output of the low side level shifter is supplied.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: May 10, 2016
    Assignees: FUJITSU LIMITED, FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Masafumi Kondou, Koji Takekawa
  • Patent number: 9324711
    Abstract: A first transistor includes a first impurity layer of a first conduction type formed in a first region of a semiconductor substrate, a first epitaxial semiconductor layer formed above the first impurity layer, a first gate insulating film formed above the first epitaxial semiconductor layer, a first gate electrode formed above the first gate insulating film, and first source/drain regions of a second conduction type formed in the first epitaxial semiconductor layer and in the semiconductor substrate in the first region.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: April 26, 2016
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Taiji Ema, Kazushi Fujita
  • Patent number: 9319013
    Abstract: A device can include an operational amplifier (op amp) circuit having a differential transistor pair, a first transistor of the differential transistor pair being formed in a first well of a substrate and a second transistor of the differential transistor pair being formed in a second well of the substrate; a body bias generator configured to generate at least a first body bias voltage for the first well, and not the second well, that varies in response to a first body bias control value; and a control circuit configured to selectively generate the first body bias control value in response to an input offset voltage of the op amp.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: April 19, 2016
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventor: Augustine Kuo
  • Patent number: 9319034
    Abstract: An integrated circuit can include at least one slew generator circuit comprising at least one body biasable reference transistor, the slew generator circuit configured to generate at least a first signal having a slew rate that varies according to characteristics of the reference transistor; a pulse generator circuit configured to generate a pulse signal having a first pulse with a duration corresponding to the slew rate of the first signal; and a counter configured to generate a count value corresponding to a duration of the first pulse.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: April 19, 2016
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventors: David A. Kidd, Edward J. Boling, Vineet Agrawal, Samuel Leshner, Augustine Kuo, Sang-Soo Lee, Chao-Wu Chen
  • Patent number: 9305996
    Abstract: After the formation of a first interlayer insulating, an etching stopper film made of SiON is formed thereon. Subsequently, a contact hole extending from the upper surface of the etching stopper film and reaching a high concentration impurity region is formed, and a first plug is formed by filling W into the contact hole. Next, a ferroelectric capacitor, a second interlayer insulating film, and the like are formed. Thereafter, a contact hole extending from the upper surface of the interlayer insulating film and reaching the first plug is formed. Then, the contact hole is filled with W to form a second plug. With this, even when misalignment occurs, the interlayer insulating film is prevented from being etched.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: April 5, 2016
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Kouichi Nagai
  • Patent number: 9297850
    Abstract: A memory test method is disclosed that can include providing at least one first switch of at least one test element coupled to a first memory section between a first node within a tested section and an intermediate node, coupling a test switch of the test element between the intermediate node and a forced voltage node, and coupling a second switch of the test element between the intermediate node and a second node; wherein the forced voltage node receives a forced voltage substantially the same as a voltage applied to the second node, and the second node is coupled to at least a second memory section.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: March 29, 2016
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventors: Lawrence T. Clark, Richard S. Roy
  • Patent number: 9299801
    Abstract: A transistor device with a tuned dopant profile is fabricated by implanting one or more dopant migrating mitigating material such as carbon. The process conditions for the carbon implant are selected to achieve a desired peak location and height of the dopant profile for each dopant implant, such as boron. Different transistor devices with similar boron implants may be fabricated with different peak locations and heights for their respective dopant profiles by tailoring the carbon implant energy to effect tuned dopant profiles for the boron.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 29, 2016
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventors: Teymur Bakhishev, Sameer Pradhan, Thomas Hoffmann, Sachin R. Sonkusale
  • Patent number: 9299698
    Abstract: A semiconductor structure includes first, second, and third transistor elements each having a first screening region concurrently formed therein. A second screening region is formed in the second and third transistor elements such that there is at least one characteristic of the screening region in the second transistor element that is different than the second screening region in the third transistor element. Different characteristics include doping concentration and depth of implant. In addition, a different characteristic may be achieved by concurrently implanting the second screening region in the second and third transistor element followed by implanting an additional dopant into the second screening region of the third transistor element.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: March 29, 2016
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventors: Dalong Zhao, Teymur Bakhishev, Lance Scudder, Paul E. Gregory, Michael Duane, U. C. Sridharan, Pushkar Ranade, Lucian Shifren, Thomas Hoffmann