Patents Assigned to Genesis
-
Publication number: 20060211219Abstract: A method and structures for manufacturing multi-layered substrates. The method includes providing a donor substrate, which has a first deflection characteristic. The donor substrate has a backside, a face, a cleave region, and a thickness of material defined between the cleave region and the face. The method includes bonding the face of the donor substrate to a face of the handle substrate. The method includes coupling a backing substrate to the backside of the donor substrate to form a multilayered structure. The backing substrate is adequate to cause the first deflection characteristic of the donor substrate to be reduced to a predetermined level. The predetermined level is a suitable deflection characteristic for the thickness of material to be transferred onto the face of a handle substrate.Type: ApplicationFiled: February 24, 2006Publication date: September 21, 2006Applicant: Silicon Genesis CorporationInventors: Francois Henley, Harry Kirk, James Sullivan
-
Publication number: 20060205180Abstract: A multilayered substrate structure comprising one or more devices, e.g., optoelectronic, integrated circuit. The structure has a handle substrate, which is characterized by a predetermined thickness and a Young's modulus ranging from about 1 Mega Pascal to about 130 Giga Pascal. The structure also has a thickness of substantially crystalline material coupled to the handle substrate. Preferably, the thickness of substantially crystalline material ranges from about 100 microns to about 5 millimeters. The structure has a cleaved surface on the thickness of substantially crystalline material and a surface roughness characterizing the cleaved film of less than 200 Angstroms. At least one or more optoelectronic devices is provided on the thickness of material.Type: ApplicationFiled: February 24, 2006Publication date: September 14, 2006Applicant: Silicon Genesis CorporationInventors: Francois Henley, Harry Kirk, James Sullivan
-
Patent number: 7100017Abstract: A processor having a limited amount of local memory for storing code and/or data utilizes a program stored in external memory. The program stored in external memory is configured into blocks which can be loaded individually into the local memory for execution. Queuing the individual blocks of code allows the program to be executed by the processor and also facilitates loading of the subsequent code to be executed. A semaphore system can be utilized to indicate which blocks of local memory are available/unavailable. The system can support the interaction of multiple independent programs in external memory.Type: GrantFiled: October 19, 2004Date of Patent: August 29, 2006Assignee: Genesis Microchip CorporationInventor: Richard K. Greicar
-
Patent number: 7094666Abstract: A method for forming a strained layer of semiconductor material, e.g., silicon, germanium, Group III/V, silicon germanium alloy. The method includes providing a non-deformable surface region having a first predetermined radius of curvature, which is defined by R(1) and is defined normal to the surface region. The method includes providing a first substrate (e.g., silicon wafer) having a first thickness. Preferably, the first substrate has a face, a backside, and a cleave plane defined within the first thickness. The method includes a step of overlying the backside of the first substrate on a portion of the surface region having the predetermined radius of curvature to cause a first bend within the thickness of material to form a first strain within a portion of the first thickness. The method provides a second substrate having a second thickness, which has a face and a backside.Type: GrantFiled: January 24, 2005Date of Patent: August 22, 2006Assignee: Silicon Genesis CorporationInventors: Francois J. Henley, Philip James Ong, Igor J. Malik, Harry R. Kirk
-
Publication number: 20060183895Abstract: Novel isolated polynucleotides and polypeptides associated with the lignin biosynthetic pathway are provided, together with genetic constructs including such sequences. Methods for the modulation of lignin content, lignin structure and lignin composition in target organisms are also disclosed, the methods comprising incorporating one or more of the polynucleotides of the present invention into the genome of a target organism.Type: ApplicationFiled: April 3, 2006Publication date: August 17, 2006Applicants: Genesis Research & Development Corporation Limited, Rubicon Forests Holdings LimitedInventors: Leonard Bloksberg, Iikka Havukkala
-
Patent number: 7091996Abstract: A method and apparatus for estimating a true horizontal resolution by determining a temporal spacing of a cumulated sum pattern of a detected rising feature edge. If the temporal spacing is approximately equal to n (which is a positive, non-zero integer, and is equal to the number of sub-pixels associated with a pixel) then the estimated horizontal resolution is the true horizontal resolution.Type: GrantFiled: August 22, 2002Date of Patent: August 15, 2006Assignee: Genesis Microchip CorporationInventor: Greg Neal
-
Patent number: 7088741Abstract: In a system having a bi-directional auxiliary channel arranged to transfer information between a video source and a video display and vice versa and a unidirectional main link arranged to carry a number multimedia data packets from the video source to the video display, a method of establishing a stable main link. The method is carried out by performing a link training session carried out over the auxiliary channel to establish the stable main link, prior to starting transmission of multimedia data packet streams from a video transmitter to a video receiver over the main channel.Type: GrantFiled: December 2, 2003Date of Patent: August 8, 2006Assignee: Genesis Microchip Inc.Inventor: Osamu Kobayashi
-
Patent number: 7083791Abstract: Isolated fibroblast growth factor receptor (FGFR5) polypeptides and polynucleotides encoding such polypeptides are provided. Also provided are modulators of FGFR5 gene expression and binding molecules that specifically bind to and agonize or antagonize FGFR5 polypeptide function. Specific binding molecules include antibodies, functional fragments thereof, as well as scFv and Camelidae heavy chain IgG that specifically bind to FGFR5 thereby modulating the activity of FGFR5 and, thus, are effective agents suitable for the treatment of diseases such as osteopontin-mediated autoimmune disease, such as systemic lupus erythematosus, bone disorders including osteoporosis and osteopetrosis, and cancers, including cellular carcinomas such as hepatocellular carcinomas.Type: GrantFiled: July 3, 2003Date of Patent: August 1, 2006Assignee: Genesis Research & Development Corporation LimitedInventors: Matthew Sleeman, J. Greg Murison
-
Publication number: 20060166472Abstract: A method of forming substrates, e.g., silicon on insulator, silicon on silicon. The method includes providing a donor substrate, e.g., silicon wafer. The method also includes forming a cleave layer on the donor substrate that contains the cleave plane, the plane of eventual separation. In a specific embodiment, the cleave layer comprising silicon germanium. The method also includes forming a device layer (e.g., epitaxial silicon) on the cleave layer. The method also includes introducing particles into the cleave layer to add stress in the cleave layer. The particles within the cleave layer are then redistributed to form a high concentration region of the particles in the vicinity of the cleave plane, where the redistribution of the particles is carried out in a manner substantially free from microbubble or microcavity formation of the particles in the cleave plane. That is, the particles are generally at a low dose, which is defined herein as a lack of microbubble or microcavity formation in the cleave plane.Type: ApplicationFiled: March 28, 2006Publication date: July 27, 2006Applicant: Silicon Genesis CorporationInventors: Francois Henley, Michael Bryan, William En
-
Publication number: 20060160329Abstract: A method for forming a strained layer of semiconductor material, e.g., silicon, germanium, Group III/V, silicon germanium alloy. The method includes providing a non-deformable surface region having a first predetermined radius of curvature, which is defined by R(1) and is defined normal to the surface region. The method includes providing a first substrate (e.g., silicon wafer) having a first thickness. Preferably, the first substrate has a face, a backside, and a cleave plane defined within the first thickness. The method includes a step of overlying the backside of the first substrate on a portion of the surface region having the predetermined radius of curvature to cause a first bend within the thickness of material to form a first strain within a portion of the first thickness. The method provides a second substrate having a second thickness, which has a face and a backside.Type: ApplicationFiled: March 17, 2006Publication date: July 20, 2006Applicant: Silicon Genesis CorporationInventors: Francois Henley, Philip Ong, Igor Malik, Harry Kirk
-
Patent number: 7078317Abstract: A system for in-situ plasma treatment. The system has a processing chamber, e.g., plasma chamber. The system has a first susceptor coupled within the chamber and a second susceptor facing the first susceptor and being within the chamber. The system has one or more power sources. Preferably, a first power source is characterized by a first frequency. The first power source is coupled to the first susceptor and the second susceptor. A second power source is characterized by a second frequency. The second power source is coupled to the first susceptor and the second susceptor. A switching device is coupled to the first power source and is coupled the second power source. The switching device is configured to selectively apply the first frequency to the first susceptor while the second frequency is applied to the second susceptor and is alternatively configured to selectively apply the first frequency to the second susceptor while the second frequency is applied to the first susceptor.Type: GrantFiled: August 6, 2004Date of Patent: July 18, 2006Assignee: Silicon Genesis CorporationInventor: Francois J. Henley
-
Patent number: 7077026Abstract: A gear system which includes a pinion and mating-gear forming a gear pair with a predetermined gear ratio (mG), center distance (C), face-width (Fw), and limiting stresses. The pinion has a pinion tooth number (N1) and a first plurality of teeth, each tooth having a first-tooth profile. The mating gear has a mating-gear tooth number (N2) satisfying the expression N2=mG·N1 and a second plurality of teeth, each tooth having a second-tooth profile. The relative curvature of the first-tooth profile and the second-tooth profile is given by the expression kc·Fc, where Fc is a relative reference curvature function given by the expression Fc=(N1+N2)2/(N1·N2·C), and kc is a relative curvature multiplier which is a function of the gear ratio (mG), the center distance (C), the face-width (Fw), and the limiting stresses.Type: GrantFiled: December 17, 2004Date of Patent: July 18, 2006Assignee: Genesis Partners, L.P.Inventor: John R. Colbourne
-
Patent number: 7072920Abstract: A general method is provided to achieve frequency conversion in an all-digital frequency conversion device that produces an output signal having a selectable phase and frequency that is substantially synchronous with the input signal to be converted. A multiplicity of time-shifted signals is generated, and appropriate ones are selected to set and reset an output signal. An apparatus, computing system, and software product that implement the present invention are also provided.Type: GrantFiled: March 18, 2002Date of Patent: July 4, 2006Assignee: Genesis Microchip Inc.Inventor: Stanislav Grushin
-
Publication number: 20060138583Abstract: A partially completed multi-layered substrate, e.g., silicon on silicon. The substrate has a thickness of material from a first substrate. The thickness of material comprises a first face region. The substrate has a second substrate having a second face region. Preferably, the first face region of the thickness of material is joined to the second face region of the second substrate. The substrate has an interface region formed between the first face region of the thickness of material and the second face region of the second substrate. A plurality of particles are implanted within a portion of the thickness of the material and a portion of the interface region to electrically couple a portion of the thickness of material to a portion of the second substrate.Type: ApplicationFiled: November 30, 2005Publication date: June 29, 2006Applicant: Silicon Genesis CorporationInventor: Francois Henley
-
Publication number: 20060141747Abstract: A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.Type: ApplicationFiled: November 16, 2005Publication date: June 29, 2006Applicant: Silicon Genesis CorporationInventors: Francois Henley, Nathan Cheung
-
Patent number: 7068686Abstract: A transmission efficient packet based display interface arranged to couple a multimedia source device to a multimedia sink device is disclosed. The transmission efficient interface includes a bi-directional auxiliary channel arranged to transfer information between the multimedia source device and the multimedia sink device and vice versa, wherein the information transferred over the auxiliary channel includes a set of packet attributes. The interface also includes a unidirectional main link arranged to carry a number multimedia data packets from the transmitter unit to the receiver unit each having a multimedia data packet header. In the described embodiment, each of the headers is substantially reduced in size over what would otherwise be necessary since the packet attributes are communicated via the auxiliary channel prior to the transmission of the main link packets over main link thereby minimizing the packet overhead and providing a very high main link efficiency.Type: GrantFiled: December 2, 2003Date of Patent: June 27, 2006Assignee: Genesis Microchip Inc.Inventor: Osamu Kobayashi
-
Publication number: 20060131687Abstract: A process for forming multi-layered substrates, e.g., silicon on silicon. The process includes providing a first substrate, which has a thickness of material to be removed. The thickness of material to be removed includes a first face region. The process includes joining the first face region of the first substrate to a second face region of a second substrate to form an interface region between the first face region of the first substrate and the second face region of the second substrate. The process includes removing the thickness of material from the first substrate while maintaining attachment of the first face region of the first substrate to the second face region of the second substrate. The process implants particles through the interface region to form a region of the particles within the vicinity of the interface region to electrically couple the thickness of material to the second substrate.Type: ApplicationFiled: November 15, 2005Publication date: June 22, 2006Applicant: Silicon Genesis CorporationInventor: Francois Henley
-
Patent number: 7056808Abstract: A method of forming substrates, e.g., silicon on insulator, silicon on silicon. The method includes providing a donor substrate, e.g., silicon wafer. The method also includes forming a cleave layer on the donor substrate that contains the cleave plane, the plane of eventual separation. In a specific embodiment, the cleave layer comprising silicon germanium. The method also includes forming a device layer (e.g., epitaxial silicon) on the cleave layer. The method also includes introducing particles into the cleave layer to add stress in the cleave layer. The particles within the cleave layer are then redistributed to form a high concentration region of the particles in the vicinity of the cleave plane, where the redistribution of the particles is carried out in a manner substantially free from microbubble or microcavity formation of the particles in the cleave plane. That is, the particles are generally at a low dose, which is defined herein as a lack of microbubble or microcavity formation in the cleave plane.Type: GrantFiled: November 20, 2002Date of Patent: June 6, 2006Assignee: Silicon Genesis CorporationInventors: Francois J. Henley, Michael A. Bryan, William G. En
-
Publication number: 20060115483Abstract: Isolated fibroblast growth factor receptor 5 (FGFR5) polypeptides are provided, together with polynucleotides encoding such polypeptides. Also provided are modulators of FGFR5 gene expression and binding molecules that specifically bind to, and agonize or antagonize, FGFR5 polypeptide function. Binding molecules include antibodies, and functional fragments thereof, as well as scFv and Camelidae heavy chain IgG that specifically bind to FGFR5 thereby modulating the activity of FGFR5. Such binding agents and modulators of FGFR5 gene expression may be employed for the treatment of disorders including: osteopontin-mediated diseases; autoimmune diseases, such as systemic lupus erythematosus; bone disorders such as osteoporosis and osteopetrosis; and cancers, including cellular carcinomas such as hepatocellular carcinomas.Type: ApplicationFiled: June 15, 2005Publication date: June 1, 2006Applicant: Genesis Research and Development Corporation LimitedInventors: Matthew Sleeman, J. Murison, Zhihui Cao
-
Patent number: 7046252Abstract: A method and apparatus that allows a display device to adaptively and automatically control display contrast and color is disclosed. The method and system in accordance with the present invention can be described by the following sequential process: 1. Separating an input image data value into its luma and chroma components. 2. Collecting the luma distribution data over the entire image or a specified window. 3. Analyzing the luma distribution. 4. Generating an appropriate contrast control response that modifies the input luma component to generate an output luma component, on a pixel by pixel basis. 5. Analyzing the input luma component and the output luma component, and an input chroma component, to generate an appropriate modification for the chroma component, on a pixel by pixel basis.Type: GrantFiled: March 26, 2004Date of Patent: May 16, 2006Assignee: Genesis Microchip Inc.Inventors: Hari Nair, Neha Agrawal, Saif Choudhary, Ashish Neema, Arun Johary