Patents Assigned to IMEC vzw
  • Publication number: 20230288299
    Abstract: The invention provides in an electron microscopy grid, comprising: - a perforated substrate; - a support film on the perforated substrate; - a mixture of different linker molecules according to Structure (I), wherein AG is an anchoring group, for anchoring the linker molecule to the solid support; BU is a binding unit, for binding to the analyte; L1 is a first linear linker section; L2 is a second linear linker section; ? is the angle between the linear linker section L1 and the linear linker section L2; AS is an angled linker section, connecting the linear linker section L1 and the linear linker section L2. The invention further provides in method of structural determination of analytes, using such EM-grids.
    Type: Application
    Filed: August 20, 2021
    Publication date: September 14, 2023
    Applicants: UNIVERSITEIT GENT, UNIVERSITEIT ANTWERPEN, IMEC VZW
    Inventors: Wouter VAN PUTTE, Thomas REICHERT, Jean-Pierre TIMMERMANS
  • Patent number: 11754603
    Abstract: The current density distribution is determined in an electronic device including a first and a second electrode, and a layer of a 2-dimensional conductive material extending between the first and second electrode. The total current through the electrodes is measured, and then a first current measurement probe is placed at a plurality of positions near the interface between the 2D material and the first electrode. The probe is coupled to the same voltage as the first electrode. The same is done at the interface between the channel and the second electrode, by placing a second probe coupled to the same voltage as the second electrode. The boundary conditions are determined for the current, and assuming that the current density vector is normal to the interfaces, this yields the boundary conditions for the current density vector. Finally, the continuity equation is solved, taking into account the boundary conditions.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: September 12, 2023
    Assignee: IMEC VZW
    Inventor: Surajit Kumar Sutar
  • Patent number: 11757056
    Abstract: An aspect comprising an optical sensor is disclosed. The optical sensor comprises stacked layers comprising: a window layer configured to allow the passage of photons; a sensing layer configured to generate charges upon impinging of the photons through the window layer; and a bottom electrode layer comprising at least one bottom electrode for receiving charges generated in the sensing layer. The sensing layer is sandwiched between the window layer and the bottom electrode layer. The at least one bottom electrode of the bottom electrode layer comprises conductive material with reflectivity higher than 0.7 to reflect back received photons into the sensing layer; and the at least one bottom electrode is obtained by semiconductor device fabrication techniques.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: September 12, 2023
    Assignees: IMEC vzw, Katholieke Universiteit Leuven
    Inventors: Yunlong Li, Epimitheas Georgitzikis, David Cheyns
  • Patent number: 11758294
    Abstract: Example embodiments relate to imaging systems and methods for acquisition of multi-spectral images. One example imaging system includes a detector that includes an array of light sensitive elements arranged in rows and columns. Each light sensitive element is configured to generate a signal dependent on an intensity of light incident onto the light sensitive element. The imaging system also includes a plurality of wavelength separating units. Each wavelength separating unit is configured to spatially separate incident light within a wavelength range into a number of wavelength bands distributed along a line. The line is a straight line. Each wavelength band along the line is associated with a mutually unique light sensitive element. Further, the imaging system includes a processing unit configured to define a number of mutually unique clusters of light sensitive elements for summing signals from the light sensitive elements within the respective clusters.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: September 12, 2023
    Assignee: IMEC VZW
    Inventors: Joo Hyoung Kim, Jiwon Lee, Jan Genoe, Robert Gehlhaar
  • Patent number: 11754825
    Abstract: An illuminator, comprising: an illumination waveguide, and a controller; the illumination waveguide being a planar waveguide configured to receive a light wave at a receiving end and guide it to a mirror end; the mirror end comprising a patterned mirror configured to reflect at least part of the light wave back into the illumination waveguide, the patterned mirror comprising a pattern configured to confer a diffraction pattern to the reflected light, the diffraction pattern contributing to an interference pattern, the interference pattern having an evanescent field outside the illumination waveguide, wherein the evanescent field of the interference pattern is configured to illuminate an object in close relation to the illumination waveguide; wherein the controller is configured to control a wavefront of the received light wave and to set a relation between the controlled wavefront and the pattern of the patterned mirror such that the interference pattern forms at least one element of constructive interference
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: September 12, 2023
    Assignee: IMEC VZW
    Inventor: Pol Van Dorpe
  • Patent number: 11752498
    Abstract: A fluidic device (100) is described for locally coating an inner surface of a fluidic channel. The fluidic device (100) comprises a first (101), a second (102) and a third (103) fluidic channel intersecting at a common junction (105). The first fluidic channel is connectable to a coating fluid reservoir and the third fluidic channel is connectable to a sample fluid reservoir. The fluidic device (100) further comprises a fluid control means (111) configured for creating a fluidic flow path for a coating fluid at the common junction (105) such that, when coating, a coating fluid propagates from the first (101) to the second (102) fluidic channel via the common junction (105) without propagating into the third (103) fluidic channel. A corresponding method for coating and for sensing also has been disclosed.
    Type: Grant
    Filed: September 15, 2021
    Date of Patent: September 12, 2023
    Assignee: IMEC VZW
    Inventors: Benjamin Jones, Tim Stakenborg, Paolo Fiorini
  • Patent number: 11757039
    Abstract: Example embodiments relate to methods for inducing stress in semiconductor devices. One method includes a method for producing a first semiconductor device and a second semiconductor device configured to conduct current through the controlled density of charge carriers in a channel area. The charge carriers of the first semiconductor device have opposite polarity to the charge carriers of the second semiconductor device. The method includes producing a stress relaxed buffer (SRD) layer. The back side of the SRB layer is positioned on a substrate. The method also includes producing a semiconductor layer on the front side of the SRB layer. Additionally, the method includes producing the first semiconductor device and the second semiconductor device on the semiconductor layer, removing the substrate, thinning the SRB layer, producing a cavity in the SRB layer, and filling the cavity with a material to create a stress compensation area.
    Type: Grant
    Filed: June 15, 2021
    Date of Patent: September 12, 2023
    Assignee: IMEC VZW
    Inventors: Gaspard Hiblot, Geert Van der Plas
  • Patent number: 11740229
    Abstract: A method for deriving a calibration curve for determining a concentration of an analyte in an electrochemical reactor comprises determining a current level between a functionalized electrode and a reference electrode in the electrochemical reactor in absence of an analyte, the current level forming a zero-concentration current; injecting a fluid comprising an analyte in a first given concentration in the electrochemical reactor, determining after the predetermined amount of time a first calibration current level corresponding to the first given concentration and calculating a first current ratio of the first current level to the zero-concentration current; repeating the previous step for at least a second given concentration of the analyte, yielding at least a second current ratio of a second current level to the zero-concentration current; obtaining a calibration curve indicative of current ratio as a function of concentration from the first current ratio and at least the second current ratio.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: August 29, 2023
    Assignees: UNIVERSITEIT GENT, IMEC VZW
    Inventors: Jan Vanfleteren, Patricia Khashayar
  • Patent number: 11735645
    Abstract: A method for forming a sensor is provided. The method includes: providing an active region comprising a channel having: a length, and a periphery consisting of one or more surfaces having said length, said periphery comprising a first part and a second part, each part having said length, the first part representing from 10 to 75% of the area of the periphery and the second part representing from 25 to 90% of the area of the periphery; providing a first dielectric structure on the entire first part, the first dielectric structure having a maximal equivalent oxide thickness; and providing a second dielectric structure on the entire second part, the second dielectric structure having a minimal equivalent oxide thickness larger than the maximal equivalent oxide thickness of the first dielectric structure.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: August 22, 2023
    Assignees: Imec VZW, Katholieke Universiteit Leuven, KU LEUVEN R&D
    Inventors: Koen Martens, Sybren Santermans, Geert Hellings, David Barge
  • Patent number: 11737371
    Abstract: The disclosed technology relates generally to a magnetic device and more particularly to a spintronic device comprising a tunnel barrier, a hybrid storage layer on the tunnel barrier and a metal layer on the hybrid storage layer. The hybrid storage layer comprises a first magnetic layer, a spacer layer on the first magnetic layer and at least one further magnetic layer on the spacer layer and exchange coupled to the first magnetic layer via the spacer layer.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: August 22, 2023
    Assignee: IMEC vzw
    Inventors: Sebastien Couet, Siddharth Rao, Robert Carpenter
  • Patent number: 11721028
    Abstract: A data processing device for motion segmentation in images obtained by cameras that move in a background environment includes an input for receiving a temporal sequence of images from the cameras and a processor. The processor is adapted for, for at least two images, of the temporal sequence of images, that are obtained by at least two cameras at different points in time, determining epipoles, defining corresponding image regions of limited image disparity due to parallax around the epipoles in the at least two images, and applying a motion segmentation algorithm to the corresponding image regions. Warping is applied to the corresponding image regions to compensate for camera rotation and misalignment beyond a threshold value.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: August 8, 2023
    Assignees: UNIVERSITEIT GENT, IMEC VZW
    Inventors: Peter Veelaert, David Van Hamme, Gianni Allebosch
  • Patent number: 11710637
    Abstract: A method that provides patterning of an underlying layer to form a first set of trenches and a second set of trenches in the underlying layer is based on a combination of two litho-etch (LE) patterning processes supplemented with a spacer-assisted (SA) technique. The method uses a layer stack comprising three memorization layers: an upper memorization layer allowing first memorizing upper trenches, and then one or more upper blocks; an intermediate memorization layer allowing first memorizing intermediate trenches and one or more first intermediate blocks, and then second intermediate blocks and intermediate lines; and a lower memorization layer allowing first memorizing first lower trenches and one or more first lower blocks, and then second lower trenches and one or more second lower blocks.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: July 25, 2023
    Assignee: Imec VZW
    Inventors: Frederic Lazzarino, Victor M. Blanco
  • Patent number: 11710850
    Abstract: A solid electrolyte (10) of the present disclosure includes porous silica (11) having a plurality of pores (12) interconnected mutually and an electrolyte (13) coating inner surfaces of the plurality of pores (12). The electrolyte (13) includes 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide represented by EMI-TFSI and a lithium salt dissolved in the EMI-TFSI. A molar ratio of the EMI-TFSI to the porous silica (11) is larger than 1.5 and less than 2.0.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: July 25, 2023
    Assignee: Imec VZW
    Inventors: Philippe Vereecken, Maarten Mees, Knut Bjarne Gandrud, Akihiko Sagara, Mitsuhiro Murata, Yukihiro Kaneko, Morio Tomiyama, Mikinari Shimada
  • Patent number: 11704462
    Abstract: A system and method for simulating an electronic circuit is disclosed. The method includes creating a finite set of circuit or device parameter points selected from within an n-dimensional parameter space. The method includes determining, for each circuit or device parameter point of the set, a corresponding response value of the performance metric and a corresponding probability of occurrence. The method includes determining, for a predetermined value of the performance metric, the total probability of occurrence.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: July 18, 2023
    Assignees: IMEC vzw, Katholieke Universiteit Leuven
    Inventors: Pieter Weckx, Dimitrios Rodopoulos, Benjamin Kaczer, Francky Catthoor
  • Patent number: 11702731
    Abstract: A method for forming a film of an oxide of In, Ga, and Zn, having a spinel crystalline phase comprises providing a substrate in a chamber; providing a sputtering target in said chamber, the target comprising an oxide of In, Ga, and Zn, wherein: In, Ga, and Zn represent together at least 95 at % of the elements other than oxygen, In represents from 0.6 to 44 at % of In, Ga, and Zn, Ga represents from 22 to 66 at % of In, Ga, and Zn, and Zn represents from 20 to 46 at % of In, Ga, and Zn; and forming a film on the substrate, the substrate being at a temperature of from 125° C. to 250° C., by sputtering the target with a sputtering gas comprising O2, the sputtering being performed at a sputtering power of at least 200 W.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: July 18, 2023
    Assignees: IMEC vzw, Applied Materials Inc.
    Inventors: Hendrik F. W. Dekkers, Jose Ignacio del Agua Borniquel
  • Patent number: 11699482
    Abstract: A compute cell for in-memory multiplication of a digital data input and a balanced ternary weight, and an in-memory computing device including an array of the compute cells, are provided. In one aspect, the compute cell includes a set of input connectors for receiving modulated input signals representative of a sign and a magnitude of the data input, and a memory unit configured to store the ternary weight. A logic unit connected to the set of input connectors and the memory unit receives the data input and the ternary weight. The logic unit selectively enables one of a plurality of conductive paths for supplying a partial charge to a read bit line during a compound duty cycle of the set of input signals as a function of the respective signs of data input and ternary weight, and disables each of the plurality of conductive paths if at least one of the ternary weight and data input have zero magnitude.
    Type: Grant
    Filed: September 8, 2021
    Date of Patent: July 11, 2023
    Assignee: IMEC vzw
    Inventors: Stefan Cosemans, Ioannis Papistas, Peter Debacker
  • Patent number: 11699720
    Abstract: Example embodiments relate to image sensors for time delay and integration imaging and methods for imaging using an array of photo-sensitive elements. One example image sensor for time delay and integration imaging includes an array of photo-sensitive elements that includes a plurality of photo-sensitive elements arranged in rows and columns of the array. Each photo-sensitive element includes an active layer configured to generate charges in response to incident light on the active layer. Each photo-sensitive element also includes a charge transport layer. Further, each photo-sensitive element includes at least a first and a second gate, each separated by a dielectric material from the charge transport layer. The array of photo-sensitive elements is configured such that the second gate of a first photo-sensitive element and the first gate of a second photo-sensitive element in a direction along a column of the array are configured to control transfer of charges.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: July 11, 2023
    Assignee: IMEC VZW
    Inventors: Pierre Boulenc, Jiwon Lee
  • Patent number: 11699810
    Abstract: A solid nanocomposite electrolyte material comprising a mesoporous dielectric material comprising a plurality of interconnected pores and an electrolyte layer covering inner surfaces of the mesoporous dielectric material. The electrolyte layer comprises: a first layer comprising a first dipolar compound or a first ionic compound, the first dipolar or ionic compound comprising a first pole of a first polarity and a second pole of a second polarity opposite to the first polarity, wherein the first layer is adsorbed on the inner surfaces with the first pole facing the inner surfaces; and a second layer covering the first layer, the second layer comprising a second ionic compound or a salt comprising first ions of the first polarity and second ions of the second polarity, wherein the first ions of the ionic compound or salt are bound to the first layer.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: July 11, 2023
    Assignees: IMEC VZW, Katholieke Universiteit Leuven, KU LEUVEN R&D
    Inventors: Philippe Vereecken, Xubin Chen, Maarten Mees
  • Patent number: 11687031
    Abstract: A method for three-dimensional imaging of a sample (302) comprises: receiving (102) interference patterns (208) acquired using light-detecting elements (212), wherein each interference pattern (208) is formed by scattered light from the sample (302) and non-scattered light from a light source (206; 306), wherein the interference patterns (208) are acquired using different angles between the sample (302) and the light source (206; 306); performing digital holographic reconstruction applying an iterative algorithm to change a three-dimensional scattering potential of the sample (302) to improve a difference between the received interference patterns (208) and predicted interference patterns based on the three-dimensional scattering potential; wherein the iterative algorithm reduces a sum of a data fidelity term and a non-differentiable regularization term and wherein the iterative algorithm includes a forward-backward splitting method alternating between forward gradient descent (108) on the data fidelity term
    Type: Grant
    Filed: December 19, 2020
    Date of Patent: June 27, 2023
    Assignees: IMEC VZW, KATHOLIEKE UNIVERSITEIT LEUVEN
    Inventors: Zhenxiang Luo, Abdulkadir Yurt, Dries Braeken, Liesbet Lagae, Richard Stahl
  • Patent number: 11684915
    Abstract: The present disclosure relates to a fluid analyzing device that includes a sensing device for analyzing a fluid sample. The sensing device includes a microchip configured for sensing the fluid sample, and a closed micro-fluidic component for propagating the fluid sample to the microchip. The fluid sample can be provided to the micro-fluidic component via an inlet of the fluid analyzing device. And a vacuum compartment, which is air-tight connected to the sensing device, can create in the micro-fluidic component a suction force suitable for propagating the fluid sample through the micro-fluidic component.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: June 27, 2023
    Assignee: IMEC VZW
    Inventors: Peter Peumans, Liesbet Lagae, Paolo Fiorini