Patents Assigned to Institute of Microelectronics
  • Publication number: 20190235858
    Abstract: An apparatus and a method for configuring or updating a programmable logic device are provided. The apparatus includes a control module and a storage module connected to the control module. The control module includes: a JTAG interface for connecting the control module to a JTAG host, and a configuration interface compatible with a to-be-configured programmable logic device. The control module is configured to: after receiving a first control instruction including configuration information via the JTAG interface, store the configuration information into the storage module; and after receiving a configuration instruction, read the configuration information to configure the to-be-configured programmable logic device. A configuration clock used in a process that the control module configures the to-be-configured programmable logic device is generated from the to-be-configured programmable logic device, the control module or an external clock source.
    Type: Application
    Filed: April 21, 2017
    Publication date: August 1, 2019
    Applicant: INSTITUTE OF MICROELECTRONICS ,CHINESE ACADEMY OF SCIENCES
    Inventors: Yuanlu XIE, Kun ZHANG, Haitao SUN, Jing LIU, Jinshun BI, Ming LIU
  • Publication number: 20190229182
    Abstract: The present disclosure relates to the field of semiconductor Integrated Circuit (IC) manufacture, and provides an InGaAs-based double-gate PMOS Field Effect Transistor (FET). The FET includes a bottom gate electrode, a bottom gate dielectric layer, a bottom gate interface control layer, an InGaAs channel layer, an upper interface control layer, a highly doped P-type GaAs layer, an ohmic contact layer, source/drain metal electrodes, a top gate dielectric layer and a top gate electrode. The source/drain metal electrodes are located on opposite sides of the ohmic contact layer. A gate trench structure is etched to an upper surface of the interface control layer between the source and drain metal electrodes. The top gate dielectric layer uniformly covers an inner surface of the gate trench structure, and the top gate electrode is provided on the top gate dielectric layer.
    Type: Application
    Filed: December 28, 2016
    Publication date: July 25, 2019
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Shengkai Wang, Honggang Liu, Bing Sun, Hudong Chang
  • Patent number: 10312345
    Abstract: The present disclosure provides a method for manufacturing a transistor having a gate with a variable work function, comprising: providing a semiconductor substrate; forming a dummy gate stack on the semiconductor substrate and performing ion implantation on an exposed area of the semiconductor substrate at both sides of the dummy gate stack to form source/drain regions; removing the dummy gate and annealing the source/drain regions; providing an atomic layer deposition reaction device; introducing a precursor source reactant into the atomic layer deposition reaction device; and controlling an environmental factor for the atomic layer deposition device to grow a work function metal layer. The present disclosure also provides a transistor having a gate with a variable work function. The present disclosure may adjust a variable work function, and may use the same material system to obtain an adjustable threshold voltage within an adjustable range.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: June 4, 2019
    Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Jinjuan Xiang, Xiaolei Wang, Hong Yang, Shi Liu, Junfeng Li, Wenwu Wang, Chao Zhao
  • Patent number: 10312439
    Abstract: A nonvolatile resistive switching memory includes an inert metal electrode, a resistive switching functional layer, and an easily oxidizable metal electrode. A graphene intercalation layer with nanopores, interposed between the easily oxidizable metal electrode and the resistive switching functional layer, is capable of controlling the metal ions, which are formed by the oxidation of the easily oxidizable metal electrode during the programming of the device, and only enter into the resistive switching functional layer through the position of the nanopores. Further, the graphene intercalation layer with nanopores is capable of blocking the diffusion of the metal ions, making the metal ions, which are formed after the oxidation of the easily oxidizable metal electrode, enter into the resistive switching functional layer only through the position of the nanopores during the programming of the device, thereby controlling the growing position of conductive filament.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: June 4, 2019
    Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Qi Liu, Ming Liu, Haltao Sun, Hangbing Lv, Shibing Long, Writam Banerjee, Kangwei Zhang
  • Patent number: 10305035
    Abstract: The present invention discloses a preparation method of a Cu-based resistive random access memory, and a memory. The preparation method includes: forming a copper wire in a groove through a Damascus copper interconnection process, wherein the copper wire includes a lower copper electrode for growing a storage medium, and the copper wire is arranged above a first capping layer; forming a second capping layer above the copper wire; forming a hole at a position corresponding to the lower copper electrode on the second capping layer, wherein the pore is used for exposing the lower copper electrode; performing composition and a chemical combination treatment on the lower copper electrode to generate a compound barrier layer, wherein the compound barrier layer is a compound formed by the chemical combination of elements Cu, Si and N, or a compound formed by the chemical combination of elements Cu, Ge and N; and depositing a solid electrolyte material and an upper electrode on the compound barrier layer.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: May 28, 2019
    Assignee: THE INSTITUTE OF MICROELECTRONICS OF CHINESE ACADEMY OF SCIENCES
    Inventors: Hangbing Lv, Ming Liu, Qi Liu, Shibing Long
  • Patent number: 10297748
    Abstract: There is provided a three-terminal atomic switching device and a method of manufacturing the same, which belongs to the field of microelectronics manufacturing and memory technology. The three-terminal atomic switching device includes: a stack structure including a source terminal and a drain terminal; a vertical trench formed by etching the stack structure; an M8XY6 channel layer formed on an inner wall and a bottom of the vertical trench; and a control terminal formed on a surface of the M8XY6 channel layer, wherein the control terminal fills the vertical trench. The source terminal resistance and the drain terminal resistance are controlled by the control terminal.
    Type: Grant
    Filed: December 26, 2014
    Date of Patent: May 21, 2019
    Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Hangbing Lv, Ming Liu, Qi Liu, Shibing Long
  • Patent number: 10276366
    Abstract: A method for manufacturing a low interface state device includes performing a remote plasma surface process on a III-Nitride layer on a substrate; transferring the processed substrate to a deposition cavity via an oxygen-free transferring system; and depositing on the processed substrate in the deposition cavity. The deposition may be low pressure chemical vapor deposition (LPCVD). The interface state between a surface dielectric and III-Nitride material may be significantly decreased by integrating a low impairment remote plasma surface process and LPCVD.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: April 30, 2019
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Xinyu Liu, Sen Huang, Xinhua Wang, Ke Wei, Wenwu Wang, Junfeng Li, Chao Zhao
  • Patent number: 10269919
    Abstract: A semiconductor device structure is provided. The semiconductor device includes a semiconductor substrate, a first device, and a second device. Each of the first and second devices includes a gate extending in a first direction, source/drain regions respectively formed on opposite first and second sides of the gate, dielectric spacers formed respectively on outer sidewalls of the gate on the first side and the second side, and conductive spacers serving contacts to the source/drain regions and formed respectively on outer sidewalls of the respective gate spacers. A second direction from the source/drain region on the first side to the source/drain region on the second side crosses the first direction.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: April 23, 2019
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huicai Zhong, Qingqing Liang, Haizhou Yin
  • Patent number: 10263111
    Abstract: A FinFET and a method for manufacturing the same are provided. The method includes: patterning a semiconductor substrate to form a ridge; performing ion implantation such that a doped punch-through-stopper layer is formed in the ridge and a semiconductor fin is formed by a portion of the semiconductor substrate disposed above the doped punch-through-stopper layer; forming a gate stack intersecting the semiconductor fin, the gate stack comprising a gate conductor and a gate dielectric isolating the gate conductor from the semiconductor fin; forming a gate spacer surrounding the gate conductor; and forming source and drain regions in portions of the semiconductor fin at opposite sides of the gate stack.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: April 16, 2019
    Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Huilong Zhu, Miao Xu
  • Publication number: 20190081237
    Abstract: Provided are a self-gating resistive storage device and a method for fabrication thereof; said self-gating resistive storage device comprises: lower electrodes; insulating dielectric layers arranged perpendicular to, and intersecting with, the lower electrodes to form a stacked structure, said stacked structure being provided with a vertical trench; a gating layer grown on the lower electrodes by means of self-alignment technique, the interlayer leakage channel running through the gating layer being isolated via the insulating dielectric layers; a resistance transition layer arranged in the vertical trench and connected to the insulating dielectric layers and the gating layer; and an upper electrode arranged in the resistance transition layer.
    Type: Application
    Filed: April 29, 2016
    Publication date: March 14, 2019
    Applicant: THE INSTITUTE OF MICROELECTRONICS OF CHINESE ACADEMY OF SCIENCES
    Inventors: Hangbing LV, Ming LIU, Xiaoxin XU, Qing LUO, Qi LIU, Shibing LONG
  • Patent number: 10192963
    Abstract: The present invention discloses a composite gate dielectric layer for a Group III-V substrate and a method for manufacturing the same. The composite gate dielectric layer comprises: an AlxY2-xO3 interface passivation layer formed on the group III-V substrate; and a high dielectric insulating layer formed on the AlxY2-xO3 interface passivation layer, wherein 1.2?x?1.9. The composite gate dielectric layer modifies the Al/Y ratio of the AlxY2-xO3 interface passivation layer, changes the average number of atomic coordination in the AlxY2-xO3 interface passivation layer, and decreases the interface state density and boundary trap density of the Group III-V substrate, increases the mobility of the MOS channel. By cooperation of the AlxY2-xO3 interface passivation layer and high dielectric insulation layer, it reduces leakage current and improves tolerance of the dielectric layer on the voltage, and improves the quality of the MOS capacitor of the Group III-V substrate and enhances its reliability.
    Type: Grant
    Filed: July 16, 2015
    Date of Patent: January 29, 2019
    Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Shengkai Wang, Honggang Liu, Bing Sun, Hudong Chang
  • Publication number: 20190013383
    Abstract: The present disclosure discloses a self-aligned silicon carbide MOSFET device with an optimized P+ region and a manufacturing method thereof. The self-aligned silicon carbide MOSFET device is formed by a plurality of silicon carbide MOSFET device cells connected in parallel, and these silicon carbide MOSFET device cells are arranged evenly. The silicon carbide MOSFET device cell comprises two source electrodes, one gate electrode, one gate oxide layer, two N+ source regions, two P+ contact regions, two P wells, one N- drift layer, one buffer layer, one N+ substrate, one drain electrode and one isolation dielectric layer.
    Type: Application
    Filed: September 10, 2015
    Publication date: January 10, 2019
    Applicants: INSTITUTE OF MICROELECTRONICS ,CHINESE ACADEMY OF SCIENCES, ZHUZHOU CRRC TIMES ELECTRIC CO., LTD.
    Inventors: Yidan TANG, Huajun SHEN, Yun BAI, Jingtao ZHOU, Chengyue YANG, Xinyu LIU, Chengzhan LI, Guoyou LIU
  • Patent number: 10176287
    Abstract: The invention discloses an STI stress effect modeling method and device of an MOS device, and belongs to the technical field of parameter extraction modeling of devices. The method comprises the following steps: introducing the influence of temperature parameters on the STI stress effect of the MOS device, so as to form a function showing that the STI stress effect of the MOS device changes along with the temperature parameters; extracting the model parameter Model1 of the MOS device at normal temperature; on the basis of the Model1, extracting the parameter Model2 that the STI stress affects the properties of the MOS device at normal temperature; and on the basis of the Model2, extracting fitting parameters of the MOS device in the function so as to acquire final model parameters. The device comprises a first module, a second module, a third module and a fourth module.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: January 8, 2019
    Assignee: The Institute of Microelectronics of Chinese Academy of Science
    Inventors: Jianhui Bu, Shuzhen Li, Jiajun Luo, Zhengsheng Han
  • Publication number: 20190006584
    Abstract: A method for improving endurance of 3D integrated resistive switching memory, comprising: Step 1: Calculating the temperature distribution in the integrated array by the 3D Fourier heat conduction equation; Step 2, selecting heat transfer mode; Step 3: selecting an appropriate array structure; Step 4: analyzing the influence of integration degree on temperature in the array; Step 5: evaluating the endurance performance in the array; and Step 6: changing the array parameters according to the evaluation result to improve the endurance performance. According to the method of the present invention, based on the thermal transmission mode in the 3D integrated resistive switching device, a suitable 3D integrated array is selected to analyze the influence of the integration degree on the device temperature so as to evaluate and improve the endurance of the 3D integrated resistive switching device.
    Type: Application
    Filed: August 12, 2016
    Publication date: January 3, 2019
    Applicant: Institute of Microelectronics, Chinese Academy of Science
    Inventors: Nianduan LU, Pengxiao SUN, Ling LI, Ming IIU, Qi LIU, Hangbing LV, Shibing LONG
  • Publication number: 20180366643
    Abstract: A method for evaluating the thermal effects of 3D RRAM arrays and reducing thermal crosstalk, including the following steps: Step 1: calculating the temperature distribution in the array through 3D Fourier heat conduction equation; Step 2, selecting a heat transfer mode; Step 3, selecting an appropriate array structure; Step 4, analyzing the effect of position of programming device in the array on the temperature; Step 5, analyzing the thermal crosstalk effect in the array; Step 6, evaluating thermal effects and thermal crosstalk; Step 7, changing the array structure or modify operating parameters based on the evaluation results to reduce the thermal crosstalk.
    Type: Application
    Filed: August 12, 2016
    Publication date: December 20, 2018
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Nianduan Lu, Pengxiao Sun, Ling Li, Ming Iiu, Qi Liu, Hangbing Lv, Shibing Long
  • Patent number: 10157956
    Abstract: A method for monolithic integration of a hyperspectral image sensor is provided, which includes: forming a bottom reflecting layer on a surface of the photosensitive region of a CMOS image sensor wafer; forming a transparent cavity layer composed of N step structures on the bottom reflecting layer through area selective atomic layer deposition processes, where N=2m, m?1 and m is a positive integer; and forming a top reflecting layer on the transparent cavity layer. With the method, non-uniformity accumulation due to etching processes in conventional technology is minimized, and the cavity layer can be made of materials which cannot be etched. Mosaic cavity layers having such repeated structures with different heights can be formed by extending one-dimensional ASALD, such as extending in another dimension and forming repeated regions, which can be applied to snapshot hyperspectral image sensors, for example, pixels, and greatly improving performance thereof.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: December 18, 2018
    Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Hushan Cui, Jinjuan Xiang, Xiaobin He, Tao Yang, Junfeng Li, Chao Zhao
  • Patent number: 10141408
    Abstract: A method and an arrangement for reducing a contact resistance of a two-dimensional crystal material are provided. An example method may include forming a contact material layer on a two-dimensional crystal material layer; performing ion implantation; and performing thermal annealing.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: November 27, 2018
    Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Kunpeng Jia, Yajuan Su, Huilong Zhu, Chao Zhao
  • Patent number: 10134983
    Abstract: A nonvolatile resistive switching memory, comprising an inert metal electrode, a resistive switching functional layer, and an easily oxidizable metal electrode, and characterized in that: a graphene barrier layer is inserted between the inert metal electrode and the resistive switching functional layer, which is capable of preventing the easily oxidizable metal ions from migrating into the inert metal electrode through the resistive switching functional layer under the action of electric field during the programming of the device.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: November 20, 2018
    Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Qi Liu, Ming Liu, Haitao Sun, Keke Zhang, Shibing Long, Hangbing Lv, Writam Banerjee, Kangwei Zhang
  • Patent number: 10134862
    Abstract: High integrity, lower power consuming semiconductor devices and methods for manufacturing the same. The semiconductor device includes: semiconductor substrate; a well region in the semiconductor substrate; an interlayer structure over the well region, the interlayer structure including a back gate conductor, semiconductor fins at both sides of the back gate conductor and respective back gate dielectric isolating the back gate conductor from the semiconductor fins, respectively, wherein the well region functions as one portion of a conductive path of the back gate conductor; a punch-through stop layer at a lower portion of the semiconductor fin; a front gate stack intersecting the semiconductor fin, the front gate stack including a front gate dielectric and a front gate conductor and the front gate dielectric isolating the front gate conductor from the semiconductor fin; and a source region and a drain region connected to a channel region provided by the semiconductor fin.
    Type: Grant
    Filed: March 19, 2013
    Date of Patent: November 20, 2018
    Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventor: Huilong Zhu
  • Patent number: 10128244
    Abstract: Provided are a CMOS device having a charged punch-through stopper (PTS) layer to reduce punch-through and a method of manufacturing the same. In an embodiment, the CMOS semiconductor device includes an n-type device and a p-type device. The n-type device and the p-type device each may include: a fin structure formed on a substrate; an isolation layer formed on the substrate, wherein a portion of the fin structure above the isolation layer acts as a fin of the n-type device or the p-type device; a charged PTS layer formed on side walls of a portion of the fin structure beneath the fin; and a gate stack formed on the isolation layer and intersecting the fin. For the n-type device, the PTS layer has net negative charges, and for the p-type device, the PTS layer has net positive charges.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: November 13, 2018
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Xing Wei