Patents Assigned to Institute of Microelectronics
-
Publication number: 20130161642Abstract: The present application discloses a semiconductor device and a method for manufacturing the same.Type: ApplicationFiled: September 26, 2010Publication date: June 27, 2013Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCESInventors: Huilong Zhu, Zhijiong Luo, Haizhou Yin
-
Patent number: 8470662Abstract: The present invention relates to a semiconductor device and a manufacturing method for making the same, wherein, according to the method, after the gate stack is formed, a buffer layer is formed on sidewalls of an PMOS gate stack, the buffer layer being formed of a porous low-k dielectric layer; and then, sidewall spacers and source/drain/halo regions, and source and drain regions are formed for the device; and finally, a high-temperature anneal is conducted in an oxygen environment such that the oxygen in the oxygen environment diffuse through the buffer layer into the high-k dielectric layer of the second gate stack. The present invention lowers threshold voltage of the PMOS device without affecting the threshold voltage of the NMOS device, avoids damages to the gate and substrate incurred by removing the PMOS sidewall spacer in a traditional process, and hereby effectively improves the overall performance of the device.Type: GrantFiled: June 28, 2010Date of Patent: June 25, 2013Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Zhijiong Luo, Huilong Zhu, Haizhou Yin
-
Publication number: 20130154097Abstract: The present invention provides a semiconductor structure and a manufacturing method thereof. The method comprises: providing a semiconductor substrate comprising semiconductor devices; depositing a copper diffusion barrier layer on the semiconductor substrate; forming a copper composite layer on the copper diffusion barrier layer; decomposing the copper composite at corresponding positions, where copper interconnection is to be formed, into copper according to the shape of the copper interconnection; and etching off the undecomposed copper composite and the copper diffusion barrier layer underneath, to interconnect the semiconductor devices. The present invention is adaptive for manufacturing interconnection in integrated circuits.Type: ApplicationFiled: December 12, 2012Publication date: June 20, 2013Applicant: Institute of Microelectronics Chinese Academy of SciencesInventor: Institute of Microelectronics Chinese Academy of Sciences
-
Patent number: 8466028Abstract: A method for manufacturing a multigate device is provided, comprising: providing a semiconductor substrate; etching the semiconductor substrate to form a protruding fin; etching the semiconductor substrate at the bottom of the fin so as to form a gap between the fin and the semiconductor substrate; forming a dielectric layer which covers the semiconductor substrate and the fin and fills the gap; and etching the dielectric layer so as to expose the top and a portion of sidewalls of the fin. The present invention can realize isolation between fins with a simple process, which costs relatively low and is suitable for massive industrial application.Type: GrantFiled: July 27, 2011Date of Patent: June 18, 2013Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Huaxiang Yin, Qiuxia Xu, Dapeng Chen
-
Patent number: 8466500Abstract: The present invention discloses a semiconductor device and a method for manufacturing the same, and relates to the field of semiconductor manufacturing. According to the present invention, the semiconductor device comprises: a semiconductor substrate; a gate region located above the semiconductor substrate; S/D regions located at both sides of the gate region and made of a stress material; wherein a concentrated stress region is formed between the gate region and the semiconductor substrate, and the concentrated stress region comprises an upper SOI layer adjacent to the gate region above, and a lower stress release layer adjacent to the semiconductor substrate below. The present invention applies to the manufacturing of a MOSFET.Type: GrantFiled: February 24, 2011Date of Patent: June 18, 2013Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Huilong Zhu, Qingqing Liang, Haizhou Yin, Zhijiong Luo
-
Patent number: 8466013Abstract: The present invention provides a method for manufacturing a semiconductor structure, which comprises: providing an SOI substrate, and forming a gate structure on the SOI substrate; etching an SOI layer and a BOX layer of the SOI substrates on both sides of the gate structure, so as to form trenches exposing the BOX layer and extending partially into the BOX layer; forming metal sidewall spacers on sidewalls of the trenches, wherein the metal sidewall spacers is in contact with the SOI layer under the gate structure; forming an insulating layer filling partially the trenches, and forming a dielectric layer to cover the gate structure and the insulating layer; etching the dielectric layer to form first contact through holes that expose at least partially the insulating layer, and etching the insulating layer from the first contact through holes to form second contact through holes that expose at least partially the metal sidewall spacer; filling the first contact through holes and the second contact through holType: GrantFiled: August 25, 2011Date of Patent: June 18, 2013Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
-
Patent number: 8460988Abstract: A method of manufacturing a semiconductor device is provided, in which after forming a gate stack and a first spacer thereof, a second spacer and a third spacer are formed; and then an opening is formed between the first spacer and the third spacer by removing the second spacer. The range of the formation for the raised active area 220 is limited by forming an opening 214 between the first spacer 208 and the third spacer 212. The raised active area 220 is formed in the opening 214 in a self-aligned manner, so that a better profile of the raised active area 220 may be achieved and the possible shorts between adjacent devices caused by an unlimited manner may be avoided. Moreover, based on such a manufacturing method, it is easy to make the gate electrode 204 to be flushed with the raised active area 220, and is also easy to implement the dual stress nitride process so as to increase the mobility of the device.Type: GrantFiled: September 26, 2010Date of Patent: June 11, 2013Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Huicai Zhong, Qingqing Liang
-
Patent number: 8461650Abstract: Semiconductor devices and methods for manufacturing the same are disclosed. In one embodiment, the semiconductor device comprises a semiconductor substrate; an insulating layer located on the semiconductor substrate; a semiconductor body located on the insulating layer; a cavity formed in the semiconductor body and into the insulating layer; source/drain regions abutting opposite first side faces of the semiconductor body; gates located on opposite second side faces of the semiconductor body; a channel layer interposed between the respective second side faces and the cavity; and a super-steep-retrograded-well and a halo super-steep-retrograded-well formed in the channel layer. The super-steep-retrograded-well and the halo super-steep-retrograded-well have opposite dopant polarities.Type: GrantFiled: March 3, 2011Date of Patent: June 11, 2013Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Huilong Zhu, Hao Wu, Weiping Xiao
-
Patent number: 8455323Abstract: There is provided a method for manufacturing a semiconductor wafer, comprising: performing heating so that metals dissolve into semiconductors of the wafer to form a semiconductor-metal compound; and performing cooling so that the formed semiconductor-metal compound retrogradely melt to form a mixture of the metals and the semiconductors. According to embodiments of the present invention, it is possible to achieve wafers of a high purity applicable to the semiconductor manufacture.Type: GrantFiled: February 25, 2011Date of Patent: June 4, 2013Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Huicai Zhong, Qingqing Liang, Chao Zhao
-
Patent number: 8456640Abstract: Apparatus and methods for measuring reflectance of optical laser components are disclosed. In one embodiment, when the reflectance of the test optical laser component is higher than 98%, a cavity ring-down (CRD) technique based configuration is employed to measure the reflectance of the test optical laser component. On the other hand, when the reflectance of the test optical laser component is lower than 98% or there is no measurable CRD signal, by removing the output cavity mirror in the CRD apparatus, a photometric configuration is formed to measure the reflectance. The switching between the two techniques can be achieved by removing or inserting the output cavity mirror of the ring-down cavity in the CRD apparatus.Type: GrantFiled: September 13, 2011Date of Patent: June 4, 2013Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Bincheng Li, Zhechao Qu, Yanling Han
-
Publication number: 20130134516Abstract: The present application discloses a semiconductor device structure and a method for manufacturing the same, wherein the method comprises: forming a semiconductor substrate comprising a local SOI structure having a local buried isolation dielectric layer; forming a fin on the silicon substrate on top of the local buried isolation dielectric layer; forming a gate stack structure on the top and side faces of the fin; forming source/drain structures in the fin on both sides of the gate stack structure; and performing metallization. The present invention makes use of traditional quasi-planar based top-down processes, thus the manufacturing process thereof is simple to implement; the present invention exhibits good compatibility with CMOS planar process and can be easily integrated, therefore, short channel effects are suppressed desirably, and MOSFETs are boosted to develop towards a trend of downscaling size.Type: ApplicationFiled: December 1, 2011Publication date: May 30, 2013Applicant: Institute of Microelectronics, Chinese Academy of SciencesInventors: Huajie Zhou, Qiuxia Xu
-
Publication number: 20130134515Abstract: The present application discloses a semiconductor Field-Effect Transistor (FET) structure and a method for manufacturing the same, wherein the method comprises: forming a semiconductor substrate comprising an SOI structure having a body-contact hole; forming a fin on the SOI structure of the semiconductor substrate; forming a gate stack structure on top and side faces of the fin; forming source/drain structures in the fin on both sides of the gate stack structure; and performing metallization. The present invention makes use of traditional quasi-planar based top-down processes, thus the manufacturing process thereof becomes simple to implement; the present invention exhibits good compatibility with CMOS planar process and can be easily integrated; the present invention also is favorable for suppressing short channel effects desirably, and boosts MOSFETs to develop towards a trend of downscaling size.Type: ApplicationFiled: December 1, 2011Publication date: May 30, 2013Applicant: Institute of Microelectronics, Chinese Academy of SciencesInventors: Huajie Zhou, Qiuxia Xu
-
Patent number: 8450813Abstract: There is provided a fin transistor structure and a method of fabricating the same. The fin transistor structure comprises a fin formed on a semiconductor substrate, wherein a bulk semiconductor material is formed between a portion of the fin serving as the channel region of the transistor structure and the substrate, and an insulation material is formed between remaining portions of the fin and the substrate. Thereby, it is possible to reduce the current leakage while maintaining the advantages of body-tied structures.Type: GrantFiled: June 25, 2010Date of Patent: May 28, 2013Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Zhijiong Luo, Haizhou Yin, Huilong Zhu
-
Patent number: 8445973Abstract: There is provided a fin transistor structure and a method of fabricating the same. The fin transistor structure comprises a fin formed on a semiconductor substrate, wherein an insulation material is formed between a portion of the fin serving as the channel region of the transistor structure and the substrate, and a bulk semiconductor material is formed between remaining portions of the fin and the substrate. Thereby, it is possible to reduce the current leakage while maintaining the advantages such as low cost and high heat transfer.Type: GrantFiled: June 24, 2010Date of Patent: May 21, 2013Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Zhijiong Luo, Huilong Zhu, Haizhou Yin
-
Publication number: 20130119341Abstract: A Resistive Random Access Memory (RRAM) cell and a memory are disclosed. In one embodiment, the RRAM cell comprises a two-state resistor and a resistive switching memory cell connected in series. The two-state resistor can supply relatively large currents under both positive and negative voltage polarities. As a result, it is possible to reduce leakage paths in a crossbar array of memory cells, and thus to suppress reading crosstalk.Type: ApplicationFiled: October 13, 2011Publication date: May 16, 2013Applicant: Institute of Microelectronics, Chinese Academy of SciencesInventors: Qi Liu, Ming Liu, Shibing Long, Hangbing Lv
-
Patent number: 8441045Abstract: The present application discloses a semiconductor device and a method of manufacturing the same. Wherein, the semiconductor device comprises: a semiconductor substrate; a stressor embedded in the semiconductor substrate; a channel region disposed on the stressor; a gate stack disposed on the channel region; a source/drain region disposed on two sides of the channel region and embedded in the semiconductor substrate; wherein, surfaces of the stressor comprise a top wall, a bottom wall, and side walls, the side walls comprising a first side wall and a second side wall, the first side wall connecting the top wall and the second side wall, the second side wall connecting the first side wall and the bottom wall, the angle between the first side wall and the second side wall being less than 180°, and the first sidewall and the second side wall being roughly symmetrical with respect to a plane parallel to the semiconductor substrate.Type: GrantFiled: February 27, 2011Date of Patent: May 14, 2013Assignee: The Institute of Microelectronics, Chinese Academy of SciencesInventors: Huilong Zhu, Qingqing Liang, Haizhou Yin, Zhijiong Luo
-
Patent number: 8441050Abstract: A fin transistor structure and a method of fabricating the same are disclosed. In one aspect the method comprises providing a bulk semiconductor substrate, patterning the semiconductor substrate to form a fin with it body directly tied to the semiconductor substrate, patterning the fin so that gaps are formed on the bottom of the fin at source/drain regions of the transistor structure to be formed. This is performed wherein a portion of the fin corresponding to the channel region of the transistor structure to be formed is directly tied to the semiconductor substrate, while other portions of the fin at the source/drain regions are separated from the surface of the semiconductor substrate by the gaps. Also, filling an insulation material into the gaps, and fabricating the transistor structure based on the semiconductor substrate with the fin formed thereon are disclosed. Thereby, it is possible to reduce the leakage current while maintaining the advantages of body-tied structures.Type: GrantFiled: March 31, 2011Date of Patent: May 14, 2013Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Zhijiong Luo, Huilong Zhu, Haizhou Yin
-
Patent number: 8440558Abstract: There is provided a semiconductor device and a method of fabricating the same. The method comprises: providing a semiconductor substrate; forming a transistor structure on the semiconductor substrate, wherein the transistor structure comprises a gate region and a source/drain region, and the gate region comprises a gate dielectric layer provided on the semiconductor substrate and a sacrificial gate formed on the gate dielectric layer; depositing a first interlayer dielectric layer, and planarizing the first interlayer dielectric layer to expose the sacrificial gate; removing the sacrificial gate to form a replacement gate hole; forming first contact holes at positions corresponding to the source/drain region in the first interlayer dielectric layer; and filling a first conductive material in the first contact holes and the replacement gate hole respectively to form first contacts and a replacement gate, wherein the first contacts come into contact with the source/drain region.Type: GrantFiled: September 16, 2010Date of Patent: May 14, 2013Assignee: Institute of Microelectronics, Chinese Academy of ScinecesInventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
-
Publication number: 20130115743Abstract: A method for forming a semiconductor device is provided, wherein a step of forming an S/D region comprises: determining an interface region comprising an active region of a partial width abutting an isolation region, and forming an auxiliary layer covering the interface region; removing a semiconductor substrate of a partial thickness in the active region using the auxiliary layer, a gate stack structure and the isolation region as a mask, so as to form a groove; and growing a semiconductor material in the groove for filling into the groove. A semiconductor device having a material of the semiconductor substrate sandwiched between an S/D region and an isolation region is further provided. The present invention is beneficial to reduce current leakage.Type: ApplicationFiled: February 16, 2011Publication date: May 9, 2013Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCESInventors: Haizhou Yin, Zhijiong Luo, Huilong Zhu
-
Patent number: 8426920Abstract: The present application provides a MOSFET and a method for manufacturing the same. The MOSFET comprises: a semiconductor substrate; a first buried insulating layer on the semiconductor substrate; a back gate formed in a first semiconductor layer which is on the first buried insulating layer; a second buried insulating layer on the first semiconductor layer; source/drain regions formed in a second semiconductor layer which is on the second buried insulating layer; a gate on the second semiconductor layer; and electrical contacts on the source/drain regions, the gate and the back gate, wherein the back gate is only under a channel region and one of the source/drain regions and not under the other of the source/drain regions, and a common electrical contact is formed between the back gate and the one of the source/drain regions. The MOSFET improves an effect of suppressing short channel effects by an asymmetric back gate, and reduces a footprint on a wafer by using the common conductive via.Type: GrantFiled: August 1, 2011Date of Patent: April 23, 2013Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Huilong Zhu, Qingqing Liang, Haizhou Yin, Zhijiong Luo