Patents Assigned to Institute of Microelectronics
-
Patent number: 8426282Abstract: The present invention provides a method for forming a semiconductor substrate isolation, comprising: providing a semiconductor substrate; forming a first oxide layer and a nitride layer sequentially on the semiconductor substrate; forming openings in the nitride layer and in the first oxide layer to expose parts of the semiconductor substrate; implanting oxygen ions into the semiconductor substrate from the openings; performing annealing to form a second oxide layer on at least top portions of the exposed parts of the semiconductor substrate; and removing the nitride layer and the first oxide layer. Compared to the conventional STI process, said method enables a more simply and easy process flow and is applicable to common semiconductor substrates and SOI substrates.Type: GrantFiled: April 8, 2011Date of Patent: April 23, 2013Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Haizhou Yin, Zhijiong Luo, Huilong Zhu
-
Publication number: 20130093002Abstract: The present disclosure discloses a MOSFET and a method for manufacturing the same, wherein the MOSFET comprises: an SOI wafer comprising a semiconductor substrate, a buried insulating layer on the semiconductor substrate, and a semiconductor layer on the buried insulating layer; a gate stack on the semiconductor layer; a source region and a drain region in the semiconductor layer on both sides of the gate stack; and a channel region in the semiconductor layer and located between the source region and the drain region, wherein the MOSFET further comprises a back gate which is located in the semiconductor substrate and has a first doped region as a lower portion of the back gate and a second doped region as an upper portion of the back gate, and the second doped region of the back gate is self-aligned with the gate stack. The MOSFET can adjust a threshold voltage by changing doping type and doping concentration of the back gate.Type: ApplicationFiled: November 18, 2011Publication date: April 18, 2013Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCESInventors: Huilong Zhu, Qingqing Liang, Haizhou Yin, Zhijiong Luo
-
Publication number: 20130093020Abstract: The present application discloses a MOSFET and a method for manufacturing the same. The MOSFET is formed on an SOI wafer, comprising: a shallow trench isolation for defining an active region in the semiconductor layer; a gate stack on the semiconductor layer; a source region and a drain region in the semiconductor layer on both sides of the gate stack; a channel region in the semiconductor layer and sandwiched by the source region and the drain region; a back gate in the semiconductor substrate; a first dummy gate stack overlapping with a boundary between the semiconductor layer and the shallow trench isolation; and a second dummy gate stack on the shallow trench isolation, wherein the MOSFET further comprises a plurality of conductive vias which are disposed between the gate stack and the first dummy gate stack and electrically connected to the source region and the drain region respectively, and between the first dummy gate stack and the second dummy gate stack and electrically connected to the back gate.Type: ApplicationFiled: November 18, 2011Publication date: April 18, 2013Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCESInventors: Huilong Zhu, Qingqing Liang, Haizhou Yin, Zhijiong Luo
-
Patent number: 8420492Abstract: The invention provides a MOS transistor and a method for forming the MOS transistor. The MOS transistor includes a semiconductor substrate; a gate stack on the semiconductor substrate, and including a gate dielectric layer and a gate electrode on the semiconductor substrate in sequence; a source region and a drain region, respectively at sidewalls of the gate stack sidewalls of the gate stack and in the semiconductor; sacrificial metal spacers on sidewalls of the gate stack sidewalls of the gate stack, and having tensile stress or compressive stress. This invention scales down the equivalent oxide thickness, improves uniformity of device performance, raises carrier mobility and promotes device performance.Type: GrantFiled: January 27, 2011Date of Patent: April 16, 2013Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Huicai Zhong, Qingqing Liang, Da Yang, Chao Zhao
-
Patent number: 8420490Abstract: The present invention relates to a method of manufacturing a semiconductor device, and the method uses the mode of thermal annealing the source/drain regions and performing Halo ion implantation to form a Halo ion-implanted region by: first removing the dummy gate to expose the gate dielectric layer to form an opening; then performing a tilted Halo ion implantation to the device from the opening to form a Halo ion-implanted region on both sides of the channel of the semiconductor device; and then annealing to activate the dopants in the Halo ion-implanted region; finally performing subsequent process to the device according to the requirement of the manufacture process.Type: GrantFiled: June 25, 2010Date of Patent: April 16, 2013Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
-
Patent number: 8420489Abstract: A method of manufacturing a semiconductor device, wherein thermal annealing of the source/drain regions is performed before reverse Halo implantation to form a reverse Halo implantation region. The method comprises: removing the dummy gate to expose the gate dielectric layer, so as to form an opening; performing reverse Halo implantation on the substrate via the opening, so as to form a reverse Halo implantation region in the channel of the device; activating the dopants in the reverse Halo implantation region by annealing; and performing subsequent device processing. Deterioration of the gate stack due to the reverse Halo ions implantation may be avoided by the present invention, such that the reverse Halo ions implantation may be applied to the device with a metal gate stack, and the short channel effects may be alleviated and controlled, thereby the performance of the device is enhanced.Type: GrantFiled: June 25, 2010Date of Patent: April 16, 2013Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
-
Patent number: 8415806Abstract: The application discloses a semiconductor structure and a method for manufacturing the same. The semiconductor structure comprises: a semiconductor substrate comprising a first surface and a second surface opposite to each other; and a silicon via formed through the semiconductor substrate, wherein the silicon via comprises a first via formed through the first surface; and a second via formed through the second surface and electrically connected with the first via, wherein the first and second vias are formed individually. Embodiments of the invention are applicable to the manufacture of a 3D integrated circuit.Type: GrantFiled: February 24, 2011Date of Patent: April 9, 2013Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventor: Huilong Zhu
-
Patent number: 8415621Abstract: A method for line width measurement, comprising: providing a substrate, wherein a raised line pattern is formed on a surface of the substrate, and the line pattern has a width; forming a first measurement structure and a second measurement structure on opposite sidewalls of the line pattern in the width direction of the line pattern; removing the line pattern; and measuring the spacing between the first measurement structure and the second measurement structure, and obtaining the width of the line pattern by subtracting a predetermined offset from the spacing. The present invention facilitates to reduce the uncertainty associated with the measuring process and to improve the measurement precision.Type: GrantFiled: July 22, 2011Date of Patent: April 9, 2013Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
-
Patent number: 8415222Abstract: The present invention provides a semiconductor device and a method for manufacturing the same. The method includes: providing a substrate; forming a gate stack on the substrate; forming an inter layer dielectric (ILD) to cover the device; etching the ILD at both sides of the gate stack and the substrate below the ILD, so as to form a groove of source and drain regions respectively; depositing a metal diffusion barrier layer in the groove; and filling the groove with a metal to form the source and drain regions. The semiconductor device includes: a substrate; a gate stack on the substrate; an inter layer dielectric (ILD) covering the device; a groove of source and drain regions formed in the ILD at both sides of the gate stack and the substrate below the ILD; and a metal diffusion barrier layer and a metal filler formed in the groove.Type: GrantFiled: September 28, 2010Date of Patent: April 9, 2013Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Wenwu Wang, Xueli Ma, Wen Ou, Dapeng Chen
-
Patent number: 8410555Abstract: There is provided a CMOSFET device with a threshold voltage controlled by means of its gate stack configuration and a method of fabricating the same. The CMOSFET device comprises: a semiconductor substrate; am interface layer grown on the silicon substrate; a first high-k gate dielectric layer deposited on the interface layer; a very thin metal layer deposited on the first high-k gate dielectric layer; a second high-k gate dielectric layer deposited on the very thin metal layer; and a gate electrode layer deposited on the second high-k gate dielectric layer.Type: GrantFiled: June 24, 2010Date of Patent: April 2, 2013Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Wenwu Wang, Huilong Zhu, Shijie Chen, Dapeng Chen
-
Patent number: 8410609Abstract: The present invention relates to a semiconductor device structure and a method for manufacturing the same; the structure comprises: a semiconductor substrate on which a device structure is formed thereon; an interlayer dielectric layer formed on the device structure, wherein a trench is formed in the interlayer dielectric layer, the trench comprises an incorporated via trench and a conductive wiring trench, and the conductive wiring trench is positioned on the via trench; and a conductive layer filled in the trench, wherein the conductive layer is electrically connected with the device structure; wherein the conductive layer comprises a conductive material and a nanotube/wire layer surrounded by the conductive material. Wherein, the conductive layer comprises a conductive material and a nanotube/wire layer surrounded by the conductive material.Type: GrantFiled: February 26, 2011Date of Patent: April 2, 2013Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Huicai Zhong, Qingqing Liang, Zhijiong Luo, Huilong Zhu
-
Patent number: 8409941Abstract: The present invention proposes a method of forming a dual contact plug, comprising steps of: forming a source/drain region and a sacrificed gate structure on a semiconductor substrate, the sacrificed gate structure including a sacrificed gate; depositing a first inter-layer dielectric layer; planarizing the first inter-layer dielectric layer to expose the sacrificed gate in the sacrificed gate structure; removing the sacrificed gate and depositing to form a metal gate; etching to form a first source/drain contact opening in the first inter-layer dielectric layer; sequentially depositing a liner and filling conductive metal in the first source/drain contact opening to form a first source/drain contact plug; depositing a second inter-layer dielectric layer on the first inter-layer dielectric layer; etching to form a second source/drain contact opening and a gate contact opening in the second inter-layer dielectric layer; and sequentially depositing a liner and filling conductive metal in the second source/drainType: GrantFiled: July 22, 2010Date of Patent: April 2, 2013Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
-
Patent number: 8410541Abstract: There is provided a CMOSFET device with threshold voltage controlled by means of interface dipoles and a method of fabricating the same. A cap layer, for example a very thin layer of poly-silicon, amorphous silicon, or SiO2, is interposed inside high-k gate dielectric layers of the CMOSFET device, and the threshold voltage is adjusted by means of the interface dipoles formed by the cap layer inside the high-k gate dielectric layers. According to the present invention, it is possible to effectively optimize the threshold voltage of the CMOSFET device without significantly increasing EOT thereof.Type: GrantFiled: June 24, 2010Date of Patent: April 2, 2013Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Wenwu Wang, Huilong Zhu, Shijie Chen, Dapeng Chen
-
Patent number: 8409986Abstract: A method for improving the within die uniformity of the metal plug CMP process in the gate last route is provided. Before performing the CMP process for forming the metal plug, a metal etching process is applied, so that the step height between the metal layers in the contact hole area and the non-contact hole area is greatly reduced. Therefore, the relatively small step height will exert a significantly less effect on the following CMP process, so that the step height will be limitedly transferred to the top of metal plug after finishing CMP process. In this way, the recess on top of the metal plug is largely reduced, so that a flat top of the metal plug is obtained, and within die uniformity and electrical properties the device are improved.Type: GrantFiled: April 20, 2011Date of Patent: April 2, 2013Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Tao Yang, Chao Zhao, Junfong Li
-
Publication number: 20130071965Abstract: An in-situ fabrication method for a silicon solar cell includes the following steps: pretreating a silicon chip; placing the pretreated silicon chip in an implantation chamber of a plasma immersion ion implantation machine; completing the preparation of black silicon via a plasma immersion ion implantation process; making a PN junction and forming a passivation layer on the black silicon; after making the PN junction and forming the passivation layer, removing the black silicon from the plasma immersion ion implantation machine; preparing a metal back electrode on the back of the black silicon; preparing a metal grid on the passivation layer; obtaining a solar cell after encapsulation. Said method enables black silicon preparation, PN junction preparation, and passivation layer formation in-situ, greatly reducing the amount of equipment needed for the preparation of solar cells and the preparation cost. In addition, the method is simple and easy to control.Type: ApplicationFiled: September 8, 2010Publication date: March 21, 2013Applicant: The Institute of Microelectronics of Chinese Academy of SciencesInventors: Yang Xia, Bangwu Liu, Chaobo Li, Jie Liu, Minggang Wang, Yongtao Li
-
Publication number: 20130069167Abstract: A SRAM cell and a method for manufacturing the same are disclosed. In one embodiment, the SRAM cell may comprise: a semiconductor layer; and a first Fin Field Effect Transistor (FinFET) and a second FinFET formed on the semiconductor layer, wherein the first FinFET comprises a first fin formed by patterning the semiconductor layer, the first fin having a first top surface and a first bottom surface, wherein the second FinFET comprises a second fin formed by patterning the semiconductor layer, the second fin having a second top surface and a second bottom surface, and wherein the first top surface is substantially flush with the second top surface, the first and second bottom surfaces abut against the semiconductor layer, and the height of the second fin is greater than the height of the first fin.Type: ApplicationFiled: November 21, 2011Publication date: March 21, 2013Applicant: Institute of Microelectronics, Chinese Academy of SciencesInventors: Huilong Zhu, Qingqing Liang
-
Publication number: 20130068297Abstract: A black silicon solar cell includes a metal back electrode, the crystal silicon, a black silicon layer, a passivation layer and a metal gate; wherein, the metal back electrode is located on the back surface of the crystal silicon, the black silicon layer is located on the crystal silicon, the passivation layer is located on the black silicon layer, the metal gate is located on the passivation layer. The fabrication method includes: carrying out pretreatment of the silicon wafer; preparing the black silicon layer on the surface of the pretreated silicon wafer by using plasma immersion ion implantation technology; preparing an emitter on the black silicon layer, and carrying out passivation treatment on the emitter to form the passivation layer; respectively preparing the metal back electrode and the metal gate on the back surface of the single crystal silicon wafer and the passivation layer, respectively.Type: ApplicationFiled: August 5, 2010Publication date: March 21, 2013Applicant: The Institute of Microelectronics of Chinese Acade Academy of SciencesInventors: Yang Xia, Bangwu Liu, Chaobo Li, Jie Liu, Minggang Wang, Yongtao Li
-
Publication number: 20130072007Abstract: A method for fabricating black silicon by using plasma immersion ion implantation is provided, which includes: putting a silicon wafer into a chamber of a black silicon fabrication apparatus; adjusting processing parameters of the black silicon fabrication apparatus to preset scales; generating plasmas in the chamber of the black silicon fabrication apparatus; implanting reactive ions among the plasmas into the silicon wafer, and forming the black silicon by means of the reaction of the reactive ions and the silicon wafer. The method can form the black silicon which has a strong light absorption property and is sensitive to light, and has advantages of high productivity, low cost and simple production process.Type: ApplicationFiled: July 26, 2010Publication date: March 21, 2013Applicant: The Institute of Microelectronics of Chinese Academy of SciencesInventors: Yang Xia, Bangwu Liu, Chaobo Li, Jie Liu, Minggang Wang, Yongtao Li
-
Patent number: 8399328Abstract: The present invention relates to a transistor and the method for forming the same. The transistor of the present invention comprises a semiconductor substrate; a gate dielectric layer formed on the semiconductor substrate; a gate formed on the gate dielectric layer; and a source region and a drain region located in the semiconductor substrate and on respective sides of the gate, wherein only the source region comprises at least one dislocation. The method for forming a transistor according to the present invention comprises forming a mask layer on a semiconductor substrate on which a gate has been formed so that the mask layer covers the gate and the semiconductor substrate; patterning the mask layer to only expose at least a portion of a source region; performing a first ion implantation to the exposed portion of the source region; and annealing the semiconductor substrate so as to form a dislocation in the exposed portion of the source region.Type: GrantFiled: May 19, 2011Date of Patent: March 19, 2013Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Haizhou Yin, Zhijong Luo, Huilong Zhu
-
Patent number: 8399315Abstract: The present application discloses a semiconductor structure and a method for manufacturing the same. The semiconductor structure comprises a semiconductor substrate; an epitaxial semiconductor layer formed on two side portions of the semiconductor substrate; a gate stack formed at a central position on the semiconductor substrate and abutting the epitaxial semiconductor layer, the gate comprising a gate conductor layer and a gate dielectric layer which is sandwiched between the gate conductor layer and the semiconductor substrate and surrounding the lateral surfaces of the gate conductor layer; and a sidewall spacer formed on the epitaxial semiconductor layer and surrounding the gate. The method for manufacturing the above semiconductor structure comprises forming raised source/drain regions in the epitaxial semiconductor layer utilizing the sacrificial gate.Type: GrantFiled: September 26, 2010Date of Patent: March 19, 2013Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Haizhou Yin, Zhijiong Luo, Huilong Zhu