Patents Assigned to Institute of Microelectronics
  • Publication number: 20120139054
    Abstract: The present invention relates to a device having adjustable channel stress and method thereof. There is provided an MOS device (200, 300), comprising a semiconductor substrate (202, 302); a channel formed on the semiconductor substrate (202, 302); a gate dielectric layer (204, 304) formed on the channel; a gate conductor (206, 306) formed on the gate dielectric layer (204, 304); and a source and a drain formed on both sides of the gate; wherein the gate conductor (206, 306) has a shape for producing a first stress to be applied to the channel so as to adjust the mobility of carriers in the channel. In the present invention, the shape of the gate conductor may be adjusted by controlling the etching process parameter, thus the stress in the channel may be adjusted conveniently, meanwhile, it may be used in combination with other mechanisms that generate stresses to obtain the desired channel stress.
    Type: Application
    Filed: May 16, 2011
    Publication date: June 7, 2012
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences, a Chinese Corporation
    Inventors: Huaxiang Yin, Qiuxia Xu, Dapeng Chen
  • Publication number: 20120140543
    Abstract: The present invention relates to a one time programming memory and method of storage and manufacture of the same. It belongs to microelectronic memory technology and manufacture field. The one time programming memory comprises a diode (10) having a unidirectional conducting rectification characteristic and a variable-resistance memory (20) having a bipolar conversion characteristic. The diode (10) having the unidirectional conducting rectification characteristic and the variable-resistance memory (20) having the bipolar conversion characteristic are connected in series. The one time programming memory device of the present invention takes the bipolar variable-resistance memory (20) as a storage unit, programming the bipolar variable-resistance memory (20) into different resistance states so as to carry out multilevel storage, and takes the unidirectional conducting rectification diode (10) as a gating unit.
    Type: Application
    Filed: August 31, 2011
    Publication date: June 7, 2012
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Ming Liu, Qingyun Zuo, Shibing Long, Changqing Xie, Zongliang Huo
  • Publication number: 20120139044
    Abstract: The present application discloses a MOSFET and a method for manufacturing the same.
    Type: Application
    Filed: August 12, 2011
    Publication date: June 7, 2012
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Miao Xu, Qingqing Liang
  • Publication number: 20120139048
    Abstract: The present application discloses a MOSFET and a method for manufacturing the same. The MOSFET comprises an SOI chip comprising a semiconductor substrate, a buried insulating layer on the semiconductor substrate, and a semiconductor layer on the buried insulating layer; source/drain regions formed in the semiconductor layer; a channel region formed in the semiconductor layer and located between the source/drain regions; and a gate stack comprising a gate dielectric layer on the semiconductor layer, and a gate conductor on the gate dielectric layer, wherein the MOSFET further comprises a backgate formed in a portion of the semiconductor substrate below the channel region, and the backgate has a non-uniform doping profile, and wherein the buried insulating layer serves as a gate dielectric layer of the backgate. The MOSFET has an adjustable threshold voltage by changing the type of dopant and/or the doping profile in the backgate, and reduces a leakage current of the semiconductor device.
    Type: Application
    Filed: March 4, 2011
    Publication date: June 7, 2012
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Miao Xu, Qingqing Liang
  • Publication number: 20120132923
    Abstract: The present invention relates to substrates for ICs and method for forming the same. The method comprises the steps of: forming a hard mask layer on the bulk silicon material; etching the hard mask layer and the bulk silicon material to form a first part for shallow trench isolation of at least one trench; forming a dielectric film on the sidewall of the at least one trench; further etching the bulk silicon material to deepen the at least one trench so as to form a second part of the at least one trench; completely oxidizing or nitridizing parts of the bulk silicon material which are between the second parts of the trenches, and parts of the bulk silicon material which are between the second parts of the trenches and side surfaces of the bulk silicon substrate; filling dielectric materials in the first and second parts of the at least one trench; and removing the hard mask layer.
    Type: Application
    Filed: June 13, 2011
    Publication date: May 31, 2012
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences, a Chinese Corporation
    Inventors: Huicai Zhong, Qingqing Liang, Haizhou Yin, Zhijiong Luo
  • Publication number: 20120132990
    Abstract: The present application discloses a semiconductor structure and a method for manufacturing the same. A semiconductor structure according to the present invention can adjust the threshold voltage by capacitive coupling between a backgate region either and a source region or a drain region with a common contact, i.e. a source contact or a drain contact, which leads to a simple manufacturing process, a higher integration level, and a lower manufacture cost. Moreover, the asymmetric design of the backgate structure, together with the doping of the backgate region which can be varied as required in an actual device design, can further enhance the effects of adjusting the threshold voltage and improve the performances of the device.
    Type: Application
    Filed: March 4, 2011
    Publication date: May 31, 2012
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Qiangqing Liang, Zhijiong Luo, Haizhou Yin
  • Publication number: 20120126310
    Abstract: The present invention provides a method for forming a channel material, comprising: forming a substrate; forming an MOS device with a dummy gate stack on the substrate; removing the dummy gate stack; forming a channel trench at the channel located under the dummy gate stack; filling the channel trench with the channel material; and forming a gate stack. According to the embodiments of the present invention, the channel material is formed by a replacement gate process after the high temperature process, such as a high temperature annealing, thereby any negative influence on the formed channel material due to the high temperature process may be effectively avoided.
    Type: Application
    Filed: September 25, 2010
    Publication date: May 24, 2012
    Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
  • Publication number: 20120112358
    Abstract: A stack-type semiconductor device includes a semiconductor substrate; and a plurality of wafer assemblies arranged in various levels on the semiconductor substrate, in which the wafer assembly in each level includes an active part and an interconnect part, and the active part and the interconnect part each have conductive through vias, wherein the conductive through vias in the active part are aligned with the conductive through vias in the interconnect part in a vertical direction, so that the active part in each level is electrically coupled with the active part in the previous level and/or the active part in the next level by the conductive through vias. Such a stack-type semiconductor device and the related methods can be applied in a process after the FEOL or in a semiconductor chip packaging process and provide a 3-dimensional semiconductor device of high integration and high reliability.
    Type: Application
    Filed: February 17, 2011
    Publication date: May 10, 2012
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Qingqing Liang, Huicai Zhong, Chao Zhao, Huilong Zhu
  • Publication number: 20120112261
    Abstract: The present invention provides a FinFET flash memory device and the method for manufacturing the same. The flash memory device is on an insulating layer, comprising: a first fin and a second fin, wherein the second fin is a control gate of the device; a gate dielectric layer, at side walls and top of the first fin and the second fin; source/drain regions, inside the first fin at both sides of a floating gate.
    Type: Application
    Filed: February 24, 2011
    Publication date: May 10, 2012
    Applicant: Institute of Microelectronics ,Chinese Academy of Sciences
    Inventors: Huilong Zhu, Haizhou Yin, Zhijiong Luo
  • Publication number: 20120112288
    Abstract: The present invention provides an isolation structure for a semiconductor substrate and a method for manufacturing the same, as well as a semiconductor device having the structure. The present invention relates to the field of semiconductor manufacture. The isolation structure comprises: a trench embedded in a semiconductor substrate; an oxide layer covering the bottom and sidewalls of the trench, and isolation material in the trench and on the oxide layer, wherein a portion of the oxide layer on an upper portion of the sidewalls of the trench comprises lanthanum-rich oxide. By the trench isolation structure according to the present invention, metal lanthanum in the lanthanum-rich oxide can diffuse into corners of the oxide layer of the gate stack, thus alleviating the impact of the narrow channel effect and making the threshold voltage adjustable.
    Type: Application
    Filed: March 2, 2011
    Publication date: May 10, 2012
    Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Zhijiong Luo, Haizhou Yin, Huilong Zhu, Huicai Zhong
  • Publication number: 20120112252
    Abstract: The present invention provides a method for manufacturing a semiconductor structure, which lies in covering a first dielectric layer with a second dielectric layer, forming a first contact hole with a small inner diameter within the second dielectric layer first, then etching the first dielectric layer to form a second contact hole with a much great inner diameter, and finally filling a conductive material into the first contact hole and the second contact hole to form contact plugs. Accordingly, the present invention further provides a semiconductor structure favorable for reducing contact resistance.
    Type: Application
    Filed: February 27, 2011
    Publication date: May 10, 2012
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
  • Publication number: 20120112249
    Abstract: A method for fabricating a semiconductor device employs the way of first performing thermal annealing to the source/drain regions and then forming an ion-implanted region, such as a retrograde well. The method comprises the steps of: removing said dummy gate so as to expose said dummy gate dielectric layer and form an opening; performing ion implantation on the substrate from the opening to form an ion-implanted region; removing the dummy gate dielectric layer; performing thermal annealing to activate the dopants of the ion-implanted region; and depositing a new gate dielectric layer and a new metal gate in the opening in sequence, wherein the formed new gate dielectric layer covers the substrate and the inner walls of the sidewall spacers.
    Type: Application
    Filed: June 25, 2010
    Publication date: May 10, 2012
    Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
  • Publication number: 20120104486
    Abstract: The present invention relates to a transistor and the method for forming the same. The transistor of the present invention comprises a semiconductor substrate; a gate dielectric layer formed on the semiconductor substrate; a gate formed on the gate dielectric layer; and a source region and a drain region located in the semiconductor substrate and on respective sides of the gate, wherein only the source region comprises at least one dislocation. The method for forming a transistor according to the present invention comprises forming a mask layer on a semiconductor substrate on which a gate has been formed so that the mask layer covers the gate and the semiconductor substrate; patterning the mask layer to only expose at least a portion of a source region; performing a first ion implantation to the exposed portion of the source region; and annealing the semiconductor substrate so as to form a dislocation in the exposed portion of the source region.
    Type: Application
    Filed: May 19, 2011
    Publication date: May 3, 2012
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences, a Chinese Corporation
    Inventors: Haizhou Yin, Zhijong Luo, Huilong Zhu
  • Publication number: 20120104466
    Abstract: The invention provides a semiconductor device comprising: a substrate; a gate, which is formed on the substrate; a source and a drain, which are located on opposite sides of the gate, respectively; a contact, which contacts with the source and/or the drain, wherein the contact has an enlarged end at an end which is in contact with the source and/or the drain. In the present invention, since the contact area of the contact is increased on the interface in contact with the source/the drain, the contact resistance can be reduced, and thus the performances of the semiconductor device can be guaranteed/improved. The present invention further provides a method of fabricating the semiconductor device (especially the contact therein) as previously described.
    Type: Application
    Filed: February 24, 2011
    Publication date: May 3, 2012
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Haizhou Yin, Zhijiong Luo
  • Publication number: 20120104508
    Abstract: There is provided a semiconductor structure and a method for manufacturing the same. The semiconductor structure according to the present invention comprises: a semiconductor substrate; a channel region formed on the semiconductor substrate; a gate stack formed on the channel region; and source/drain regions formed on both sides of the channel region and embedded in the semiconductor substrate. The gate stack comprises: a gate dielectric layer formed on the channel region; and a conductive layer positioned on the gate dielectric layer. For an nMOSFET, the conductive layer has a compressive stress to apply a tensile stress to the channel region; and for a pMOSFET, the conductive layer has a tensile stress to apply a compressive stress to the channel region.
    Type: Application
    Filed: February 25, 2011
    Publication date: May 3, 2012
    Applicant: Institute of Microelectronics Chinese Academy of Scienes
    Inventors: Huilong Zhu, Qingqing Liang, Zhijiong Luo, Haizhou Yin
  • Publication number: 20120104495
    Abstract: The present application discloses a semiconductor structure and a method for manufacturing the same. The semiconductor structure according to the present invention adjusts a threshold voltage with a common contact, which has a portion outside the source or drain region extending to the back-gate region and provides an electrical contact of the source or drain region and the back-gate region, which leads to a simple manufacturing process, an increased integration level and a lowered manufacture cost. Moreover, the asymmetric design of the back-gate structure further increases the threshold voltage and improves the performance of the device.
    Type: Application
    Filed: March 4, 2011
    Publication date: May 3, 2012
    Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Huilong Zhu, Qingqing Liang, Haizhou Yin, Zhijiong Luo
  • Publication number: 20120104474
    Abstract: The present invention relates to a transistor and the method for forming the same. The transistor of the present invention comprises a semiconductor substrate; a gate dielectric layer formed on the semiconductor substrate; a gate formed on the gate dielectric layer; a source region and a drain region located in the semiconductor substrate and on respective sides of the gate, wherein at least one of the source region and the drain region comprises at least one dislocation; an epitaxial semiconductor layer containing silicon located on the source region and the drain region; and a metal silicide layer on the epitaxial semiconductor layer.
    Type: Application
    Filed: May 20, 2011
    Publication date: May 3, 2012
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences a Chines Corporation
    Inventors: Haizhou Yin, Huilong Zhu, Zhijong Luo
  • Publication number: 20120108032
    Abstract: A method for forming a semiconductor device with stressed trench isolation is provided, comprising: providing a silicon substrate (S11); forming at least two first trenches in parallel on the silicon substrate and forming a first dielectric layer which is under tensile stress in the first trenches (S12); forming at least two second trenches, which have an extension direction perpendicular to that of the first trenches, in parallel on the silicon substrate, and forming a second dielectric layer in the second trenches (S13); and after forming the first trenches, forming a gate stack on a part of the silicon substrate between two adjacent first trenches, wherein the channel length direction under the gate stack is parallel to the extension direction of the first trenches (S14). The present invention supply tensile stress in the channel width direction of a MOS transistor, so as to improve performance of PMOS and/or NMOS transistors.
    Type: Application
    Filed: January 27, 2011
    Publication date: May 3, 2012
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Haizhou Yin, Zhijiong Luo, Huilong Zhu
  • Publication number: 20120104506
    Abstract: There is provided a CMOSFET device with threshold voltage controlled by means of interface dipoles and a method of fabricating the same. A cap layer, for example a very thin layer of poly-silicon, amorphous silicon, or SiO2, is interposed inside high-k gate dielectric layers of the CMOSFET device, and the threshold voltage is adjusted by means of the interface dipoles formed by the cap layer inside the high-k gate dielectric layers. According to the present invention, it is possible to effectively optimize the threshold voltage of the CMOSFET device without significantly increasing EOT thereof.
    Type: Application
    Filed: June 24, 2010
    Publication date: May 3, 2012
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Wenwu Wang, Huilong Zhu, Shijie Chen, Depeng Chen
  • Publication number: 20120097923
    Abstract: The invention provides a graphene device structure and a method for manufacturing the same, the device structure comprising a graphene layer; a gate region in contact with the graphene layer; semiconductor doped regions formed in the two opposite sides of the gate region and in contact with the graphene layer, wherein the semiconductor doped regions are isolated from the gate region; a contact formed on the gate region and contacts formed on the semiconductor doped regions. The on-off ratio of the graphene device is increased through the semiconductor doped regions without increasing the band gap of the graphene material, i.e., without affecting the mobility of the material or the speed of the device, thereby increasing the applicability of the graphene material in CMOS devices.
    Type: Application
    Filed: February 24, 2011
    Publication date: April 26, 2012
    Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Qingqing Liang, Zhi Jin, Wenwu Wang, Huicai Zhong, Xinyu Liu, Huilong Zhu