Patents Assigned to Institute of Microelectronics
  • Publication number: 20110316080
    Abstract: There is provided a fin transistor structure and a method of fabricating the same. The fin transistor structure comprises a fin formed on a semiconductor substrate, wherein an insulation material is formed between a portion of the fin serving as the channel region of the transistor structure and the substrate, and a bulk semiconductor material is formed between remaining portions of the fin and the substrate. Thereby, it is possible to reduce the current leakage while maintaining the advantages such as low cost and high heat transfer.
    Type: Application
    Filed: June 24, 2010
    Publication date: December 29, 2011
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Zhijiong Luo, Huilong Zhu, Haizhou Yin
  • Publication number: 20110316088
    Abstract: A semiconductor structure and a method for forming the same are provided. The structure comprises a semiconductor substrate (100) with an nMOSFET region (102) and a pMOSFET region (104) on it. An nMOSFET structure and a pMOSFET structure are formed in the nMOSFET region (102) and the pMOSFET region (104), respectively. The nMOSFET structure comprises a first channel region (182) formed in the nMOSFET region (102) and a first gate stack formed in the first channel region (182). The nMOSFET structure is covered with a compressive-stressed material layer (130) to apply a tensile stress to the first channel region (182). The pMOSFET structure comprises a second channel region (184) formed in the pMOSFET region (104) and a second gate stack formed in the second channel region (184). The pMOSFET structure is covered with a tensile-stressed material layer (140) to apply a compressive stress to the second channel region (184).
    Type: Application
    Filed: February 24, 2011
    Publication date: December 29, 2011
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Zhijiong Luo, Haizhou Yin
  • Publication number: 20110298050
    Abstract: There is provided a fin transistor structure and a method of fabricating the same. The fin transistor structure comprises a fin formed on a semiconductor substrate, wherein a bulk semiconductor material is formed between a portion of the fin serving as the channel region of the transistor structure and the substrate, and an insulation material is formed between remaining portions of the fin and the substrate. Thereby, it is possible to reduce the current leakage while maintaining the advantages of body-tied structures.
    Type: Application
    Filed: June 25, 2010
    Publication date: December 8, 2011
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Zhijiong Luo, Haizhou Yin, Huilong Zhu
  • Publication number: 20110298053
    Abstract: A manufacturing method of a gate stack with sacrificial oxygen-scavenging metal spacers includes: forming a gate stack structure consisting of an interfacial oxide layer, a high-K dielectric layer and a metal gate electrode, on a semiconductor substrate; conformally depositing a metal layer covering the semiconductor substrate and the gate stack structure; and selectively etching the metal layer to remove the portions of the metal layer covering the top surface of the gate stack structure and the semiconductor substrate, so as to only keep the sacrificial oxygen-scavenging metal spacers surrounding the gate stack structure in the outer periphery of the gate stack structure. A semiconductor device manufactured by this process.
    Type: Application
    Filed: September 19, 2010
    Publication date: December 8, 2011
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huicai Zhong, Zhijiong Luo, Qingqing Liang
  • Publication number: 20110298018
    Abstract: The invention provides a transistor, including: a substrate having a channel region; a source region and a drain region on two ends of the channel region of the substrate respectively; a gate high-K dielectric layer on a top surface of the substrate above the channel region between the source region and the drain region; an interfacial layer under the gate high-K dielectric layer, including a first portion near the source region and a second portion near the drain region, wherein an equivalent oxide thickness of the first portion is larger than that of the second portion. An asymmetric replacement metal gate forms an asymmetric interfacial layer, which is thin at the drain region side and thick at the source region side. At the thin drain region side, the short channel effect is significant and the asymmetric interfacial layer advantageously suppresses the short channel effect.
    Type: Application
    Filed: June 28, 2010
    Publication date: December 8, 2011
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Haizhou Yin, Zhijiong Luo, Huilong Zhu
  • Publication number: 20110291184
    Abstract: The present application discloses a semiconductor structure and a method for manufacturing the same. The semiconductor structure comprises a semiconductor substrate; an epitaxial semiconductor layer formed on two side portions of the semiconductor substrate; a gate stack formed at a central position on the semiconductor substrate and abutting the epitaxial semiconductor layer, the gate comprising a gate conductor layer and a gate dielectric layer which is sandwiched between the gate conductor layer and the semiconductor substrate and surrounding the lateral surfaces of the gate conductor layer; and a sidewall spacer formed on the epitaxial semiconductor layer and surrounding the gate. The method for manufacturing the above semiconductor structure comprises forming raised source/drain regions in the epitaxial semiconductor layer utilizing the sacrificial gate.
    Type: Application
    Filed: September 26, 2010
    Publication date: December 1, 2011
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Haizhou Yin, Zhijiong Luo, Huilong Zhu
  • Publication number: 20110284992
    Abstract: The present invention provides a 3D integrated circuit and a manufacturing method thereof. The circuit structure comprises: a semiconductor substrate; at least one semiconductor device formed on the upper surface of the semiconductor substrate; a through-Si-via through the semiconductor substrate and comprising an insulating layer covering sidewalls of the through-Si-via and conductive material filled in the insulating layer; an interconnection structure connecting the at least one semiconductor device and the through-Si-via; and a diffusion trapping region formed on the lower surface of the semiconductor substrate. The present invention is applicable in manufacture of the 3D integrated circuit.
    Type: Application
    Filed: September 19, 2010
    Publication date: November 24, 2011
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventor: Huilong Zhu
  • Publication number: 20110284934
    Abstract: There are provided a semiconductor device and a method of fabricating the same. The semiconductor device comprises: a semiconductor substrate of a first conductive type; a gate formed on the semiconductor substrate; and a heavily doped region of the first conductive type and a heavily doped region of a second conductive type formed respectively in the semiconductor substrate at either side of the gate, wherein the heavily doped region of the second conductive type is separated from the channel region under the gate and partially separated from the semiconductor substrate by a dielectric layer. By means of this semiconductor device, it is possible to provide excellent switching behavior.
    Type: Application
    Filed: September 16, 2010
    Publication date: November 24, 2011
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Zhijiong Luo, Huilong Zhu, Haizhou Yin
  • Publication number: 20110260255
    Abstract: The present invention relates to a method of manufacturing a semiconductor device. After depositing the metal gate electrode material, a layer of oxygen molecule catalyzing layer having a catalyzing function to the oxygen molecules is deposited, and afterwards, a low-temperature PMA annealing process is used to decompose the oxygen molecules in the annealing atmosphere into more active oxygen atoms. These oxygen atoms are diffused into the high-k gate dielectric film through the metal gate to supplement the oxygen vacancies in the high-k film, in order to alleviate oxygen vacancies in the high-k film and improve the quality of the high-k film. According to the present invention, the oxygen vacancies and defects of high-k gate dielectric film will be alleviated, and further, growth of SiOx interface layer having a low dielectric constant caused by the traditional PDA high temperature process may be prevented.
    Type: Application
    Filed: June 24, 2010
    Publication date: October 27, 2011
    Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Wenwu Wang, Shijie Chen, Xiaolei Wang, Kai Han, Dapeng Chen
  • Publication number: 20110260231
    Abstract: The present application discloses a memory device and a method for manufacturing the same.
    Type: Application
    Filed: September 21, 2010
    Publication date: October 27, 2011
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Qingqing Liang, Huicai Zhong
  • Publication number: 20110260214
    Abstract: The present invention discloses a semiconductor device and a method for manufacturing the same, and relates to the field of semiconductor manufacturing. According to the present invention, the semiconductor device comprises: a semiconductor substrate; a gate region located above the semiconductor substrate; S/D regions located at both sides of the gate region and made of a stress material; wherein a concentrated stress region is formed between the gate region and the semiconductor substrate, and the concentrated stress region comprises an upper SOI layer adjacent to the gate region above, and a lower stress release layer adjacent to the semiconductor substrate below. The present invention applies to the manufacturing of a MOSFET.
    Type: Application
    Filed: February 24, 2011
    Publication date: October 27, 2011
    Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Huilong Zhu, Qingqing Liang, Haizhou Yin, Zhijiong Luo
  • Publication number: 20110260262
    Abstract: A semiconductor device includes a semiconductor substrate; gates, spacers on both sides of the respective gates, and source and gain regions on both sides of the respective spacers, which are formed on the semiconductor substrate; lower contacts located on the respective source and gain regions and abutting outer-sidewalls of the spacers, with bottoms covering at least a portion of the respective source and gain regions; an inter-layer dielectric layer formed on the gates, the spacers, the source and gain regions, and the lower contacts, wherein the respective source and gain regions of each of the transistor structures are isolated from each other by the inter-layer dielectric layer; and upper contacts formed in the inter-layer dielectric layer and corresponding to the lower contacts. Methods for fabricating such a semiconductor device and for manufacturing contacts for semiconductor devices.
    Type: Application
    Filed: September 17, 2010
    Publication date: October 27, 2011
    Applicant: Institute of Microelectronics, Chinese Academy of
    Inventors: Haizhou Yin, Zhijiong Luo, Huilong Zhu
  • Publication number: 20110260258
    Abstract: The devices are manufactured by replacement gate process and replacement sidewall spacer process, and both tensile stress in the channel region of NMOS device and compressive stress in the channel region of PMOS device are increased by forming a first stress layer with compressive stress in the space within the first metal gate layer of NMOS and a second stress layer with tensile stress in the space within the second metal gate layer of PMOS, respectively. After formation of the stress layers, sidewall spacers of the gate stacks of PMOS and NMOS devices are removed so as to release stress in the channel regions. In particular, stress structure with opposite stress may be formed on sidewalls of the gate stacks of the NMOS device and PMOS device and on a portion of the source region and the drain region, in order to further increase both tensile stress of the NMOS device and compressive stress of the PMOS device.
    Type: Application
    Filed: June 22, 2010
    Publication date: October 27, 2011
    Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Huilong Zhu, Zhijiong Luo, Haizhou Yin
  • Publication number: 20110254093
    Abstract: A semiconductor device and a method of manufacturing the same are provided. A multi-component high-k interface layer containing elements of the substrate is formed from a ultra-thin high-k dielectric material in a single-layer structure of atoms by rapid annealing in the manufacturing of a CMOS transistor by the replacement gate process, and a high-k gate dielectric layer with a higher dielectric constant and a metal gate layer are formed thereon. The EOT of the device is effectively decreased, and the diffusion of atoms in the high-k gate dielectric layer from an upper level thereof is effectively prevented by the optimized high-k interface layer at high-temperature treatment. Thus, the present invention may also avoid the growth of the interface layers and the degradation of carrier mobility.
    Type: Application
    Filed: June 24, 2010
    Publication date: October 20, 2011
    Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Wenwu Wang, kai Han, Shijie Chen, Xiaolei Wang, Dapeng Chen
  • Publication number: 20110256704
    Abstract: A method of manufacturing a metal gate/high K dielectric gate stack includes the steps of: forming an interfacial layer of SiON or SiO2 on a silicon substrate; depositing a high K dielectric film on the interfacial layer; performing a rapid thermal anneal of the high K dielectric film; depositing a TaN metal gate electrode film on the high K dielectric film; depositing a polysilicon gate layer on the TaN metal gate electrode film, and then depositing a hard mask layer; patterning a photoresist mask, and performing an anisotropic etching of the hard mask layer; removing the photoresist mask, and etching the polysilicon by reactive ion etching with the hard mask as masking layer using a mixed gas of Cl2/HBr; and etching the TaN metal gate electrode/high K dielectric gate stack by reactive ion etching with the hard mask as masking layer using BCl3-based etchant gas.
    Type: Application
    Filed: September 21, 2010
    Publication date: October 20, 2011
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Qiuxia Xu, Yongliang Li
  • Publication number: 20110256683
    Abstract: The present invention relates to a method of manufacturing a semiconductor device, wherein the method comprises: providing a substrate; forming a source region, a drain region, a dummy gate structure, and a gate dielectric layer on the substrate, wherein the dummy gate structure is between the source region and the drain region on the substrate, and the gate dielectric layer is between the substrate and the dummy gate structure; annealing the source region and the drain region; removing the dummy gate structure to form an opening; implanting dopants into the substrate from the opening to form a steep retrograded well; annealing to activate the dopants; and forming a metal gate on the gate dielectric layer by deposition.
    Type: Application
    Filed: June 22, 2010
    Publication date: October 20, 2011
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Wenwu Wang
  • Publication number: 20110254063
    Abstract: The present invention provides a MOS device, which comprises: a substrate; an interface layer thin film formed on the substrate; a high k gate dielectric layer formed on the interface layer thin film; and a metal gate formed on the high k gate dielectric layer. The metal gate comprises, upwardly in order, a metal gate work function layer, an oxygen absorption element barrier layer, a metal gate oxygen absorbing layer, a metal gate barrier layer and a polysilicon layer.
    Type: Application
    Filed: September 27, 2010
    Publication date: October 20, 2011
    Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Shijie Chen, Wenwu Wang, Xiaolei Wang, Kai Han
  • Publication number: 20110248358
    Abstract: A method of manufacturing a semiconductor device, wherein thermal annealing of the source/drain regions is performed before reverse Halo implantation to form a reverse Halo implantation region. The method comprises: removing the dummy gate to expose the gate dielectric layer, so as to form an opening; performing reverse Halo implantation on the substrate via the opening, so as to form a reverse Halo implantation region in the channel of the device; activating the dopants in the reverse Halo implantation region by annealing; and performing subsequent device processing. Deterioration of the gate stack due to the reverse Halo ions implantation may be avoided by the present invention, such that the reverse Halo ions implantation may be applied to the device with a metal gate stack, and the short channel effects may be alleviated and controlled, thereby the performance of the device is enhanced.
    Type: Application
    Filed: June 25, 2010
    Publication date: October 13, 2011
    Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
  • Publication number: 20110248360
    Abstract: The present invention relates to a high-speed transistor device and a method for fabricating the same. A high-speed transistor device is proposed, comprising: a silicon substrate; and a gate stack formed on the silicon substrate. The gate stack comprises a gate dielectric stack and a gate electrode layer, and the gate dielectric stack comprises at least a SrTiO3 layer and a LaAlO3 layer positioned thereon. The electron concentration is improved by the two-dimensional electron gas generated ascribing to a triangular potential well formed between the SrTiO3 layer and the LaAlO3 layer. Meanwhile, since the channel is formed between the SrTiO3 layer and the LaAlO3 layer, the electrons and the scattering center are seperated from each other, such that the electron mobility is enhanced, which accordingly improves the speed of the transistor device.
    Type: Application
    Filed: September 26, 2010
    Publication date: October 13, 2011
    Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Zhijiong Luo, Huilong Zhu, Haizhou Yin
  • Publication number: 20110248282
    Abstract: The invention provides a semiconductor structure and a manufacturing method of the same, and relates to a field of semiconductor manufacture. The semiconductor structure comprises: a silicon substrate; a large bandgap semiconductor layer formed on the silicon substrates; and a silicon layer formed on the large bandgap semiconductor layer. The method comprises: growing a large bandgap semiconductor layer on a silicon substrate; and growing a silicon layer on the large bandgap semiconductor layer. The embodiments of the present invention can be applied to manufacture of semiconductor devices.
    Type: Application
    Filed: October 26, 2010
    Publication date: October 13, 2011
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo