Patents Assigned to INSTITUTE
  • Patent number: 8841846
    Abstract: In a light-installed area where a plurality of lights are installed, a light managing system senses a moving object that enters the light-installed area and predicts an predicted stop position of the moving object based on record information on a channel of movement corresponding to identification information on the moving object. The light managing system calculates a predicted channel of movement of the moving object based on the predicted stop position, and selects lights to be driven based on the calculated predicted channel of movement. The light managing system turns on the selected lights.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: September 23, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Seung-mok Yoo, Kwang Soo Kim, Tae-Wook Heo, Hyunhak Kim
  • Patent number: 8841045
    Abstract: A method for fabricating a bi-polar plate of a fuel cell and the bi-polar plate thereof are presented. A graphite film is formed first. Next, a polymeric material added with electrically conductive powder is coated on a surface of a metal substrate. The graphite film is disposed on the polymeric material and the polymeric material is hardened to form an adhesive layer, such that the graphite film is attached on the surface of the metal substrate.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: September 23, 2014
    Assignee: Industrial Technology Reserach Institute
    Inventors: Wen-Lin Wang, Chun-Hsing Wu, Kan-Lin Hsueh, Huan-Ruei Shiu, Wen-Chen Chang, Fang-Hei Tsau, Lung-Yu Sung
  • Patent number: 8841085
    Abstract: Disclosed are a nanoparticle sensor for measuring protease activity, for protease imaging, and a method for preparing the same. More specifically, the present invention relates to a nanoparticle sensor for measuring protease activity in which a fluorophore- and a quencher-conjugated peptide substrate is conjugated to a biocompatible polymer nanoparticle. The peptide substrate is specifically lysed by a protease. The sensor according to the present invention is capable of inhibiting emission of fluorescence with high extinctive activity of the quencher on a fluorescent material. But strong fluorescence is specifically emitted only if the peptide substrate is lysed by a specific protease. Therefore, the sensor is especially useful as a method for screening a novel drug such as a protease overexpression inhibitor, and early diagnosis of incurable diseases and various diseases such as autoimmune diseases including cancer, osteoarthritis, rheumatoid arthritis and dementia.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: September 23, 2014
    Assignees: Korea Institute of Science and Technology, The Asan Foundation, Futurechem Co., Ltd.
    Inventors: Ick-Chan Kwon, Kui-Won Choi, Kwang-Meyung Kim, In-Chan Youn, Seul-Ki Lee, Kyeong-Soon Park, Dae-Hyuk Moon, Dae-Yoon Chi, Seung-Jin Lee, Seung-Jae Myung
  • Patent number: 8842738
    Abstract: Disclosed herein is a signal processing apparatus and method based on multiple textures using video audio excitation signals. For this, an input signal that includes a video signal and an audio signal is divided into unit component signals, and one is selected from a plurality of frames of each unit component signal as a seed signal. A plurality of texture points are detected from the seed signal. The texture points are tracked from the frames of the unit component signal and then spatio-temporal location transform variables for the texture points are calculated. Texture signals are defined using texture points at which the spatio-temporal location transform variables correspond to one another. Each of the texture signals is defined as a sum of a plurality of texture blocks that are outputs of texture synthesis filters that receive video audio excitation signals as inputs.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: September 23, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventor: Sung-Hoon Hong
  • Patent number: 8841899
    Abstract: Disclosed is an electro-magnetic tomography including: a modulator configured to modulate a generated transmit reference signal using a pseudo-noise signal; a transmitter configured to transmit the signal modulated by the modulator; a receiver configured to receive a signal transmitted from a transmitter; an amplitude detector configured to compare an amplitude magnitude between the signal received by the receiver and the transmit reference signal to measure a received amplitude; and a demodulator configured to demodulate the signal received by the receiver using the pseudo-noise signal to generate a cyclic signal, compare a phase between the transmit reference signal and the cyclic signal to measure the phase of the cyclic signal, and determine the phase of the received signal based on the phase of the measured cyclic signal.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: September 23, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Soon-Ik Jeon, Hyuk-Je Kim, Seong-Ho Son
  • Patent number: 8841721
    Abstract: A step trench metal-oxide-semiconductor field-effect transistor comprises a drift layer, a first semiconductor region, a stepped gate and a floating region. The drift layer is of a first conductivity type. The first semiconductor region is of a second conductivity type and located on the drift layer, wherein the drift layer and the first semiconductor region have a stepped gate trench therein. The stepped gate trench at least comprises a first recess located in the first semiconductor region and extending into the drift layer and a second recess located below a bottom of the first recess, wherein a width of the second recess is smaller than a width of the first recess. A floating region is of the second conductivity type and located in the drift layer below the second recess.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: September 23, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Cheng-Tyng Yen, Chien-Chung Hung, Young-Shying Chen, Chwan-Ying Lee
  • Patent number: 8841495
    Abstract: This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: September 23, 2014
    Assignee: Gas Technology Institute
    Inventors: Terry L. Marker, Larry G. Felix, Martin B. Linck, Michael J. Roberts
  • Patent number: 8841951
    Abstract: Disclosed is an apparatus for controlling a duty ratio of a signal that includes a clock control unit configured to generate a plurality of control signals based on an input signal, a half-cycle generation unit configured to generate a multiplied signal by use of the input signal and a delay signal that is obtained by delaying the input signal based on a delay control voltage, and divide the multiplied signal to generate a first division signal and a second division signal that are in inverse relation to each other, a comparator unit configured to compare a pulse width of the first division signal with a pulse width of the second division signal based on the control signal provided by the clock control unit, and output a delay control signal corresponding to a result of the comparison, and a control voltage generation unit configured to output a delay control voltage.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: September 23, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hui Dong Lee, Jae Ho Jung, Kwang Chun Lee
  • Patent number: 8841712
    Abstract: A field effect nano-pillar transistor has a pillar shaped gate element incorporating a biomimitec portion that provides various advantages over prior art devices. The small size of the nano-pillar transistor allows for advantageous insertion into cellular membranes, and the biomimitec character of the gate element operates as an advantageous interface for sensing small amplitude voltages such as transmembrane cell potentials. The nano-pillar transistor can be used in various embodiments to stimulate cells, to measure cell response, or to perform a combination of both actions.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: September 23, 2014
    Assignee: California Institute of Technology
    Inventors: Aditya Rajagopal, Axel Scherer, Michael D. Henry, Sameer Walavalkar, Thomas A. Tombrello, Andrew P. Homyk
  • Patent number: 8841613
    Abstract: A 4D electron tomography system includes a stage having one or more degrees of freedom, an electron source, and electron optics operable to direct electron pulses to impinge on a sample supported on the stage. A pulse of the electron pulses impinges on the sample at a first time. The system also includes a laser system and optics operable to direct optical pulses to impinge on the sample. A pulse of the optical pulses impinges on the sample at a second time. The system further includes a detector operable to receive the electron pulses passing through the sample, a controller operable to independently modify an orientation of the stage and at least one of the first time or the second time, a memory operable to store sets of images, and a processor operable to form a 4D tomographic image set from the sets of images.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: September 23, 2014
    Assignee: California Institute of Technology
    Inventors: Ahmed H. Zewail, Oh-Hoon Kwon, Omar Farghaly Mohammed Abdelsaboor, Ding-Shyue Yang
  • Patent number: 8841292
    Abstract: Sudden cardiac arrest is treated by reducing blood temperature from about 37° C. to 33° C., following resuscitation, by injecting hypothermia inducing drugs such as a cannabinoid type into the patient's body, preferably in combination with physical surface body cooling.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: September 23, 2014
    Assignee: Weil Institute of Critical Care Medicine
    Inventors: Wanchun Tang, Shijie Sun
  • Patent number: 8841346
    Abstract: The invention relates to methods and compositions for promoting cognitive function and/or treating cognitive function disorders and impairments. In particular the methods are accomplished by administering to a subject CI-994 or dinaline or a pharmaceutically acceptable salt, ester, prodrug or metabolite thereof.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: September 23, 2014
    Assignees: Massachusetts Institute of Technology, The Broad Institute, Inc., The General Hospital Corporation
    Inventors: Li-Huei Tsai, Ji-Song Guan, Stephen J. Haggarty, Edward Holson, Florence Wagner, Johannes Graeff
  • Patent number: 8841266
    Abstract: A method of treating a disease associated with a cell population which proliferates abnormally in a subject is disclosed. The method comprises administering to the subject a therapeutically effective amount of at least one modulator capable of modulating in the cell population a level and/or activity of a polypeptide having an amino acid sequence at least 60 percent similar to SEQ ID NO: 5, as determined using the Standard protein-protein BLAST [blastp] software of the NCBI.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: September 23, 2014
    Assignees: Tel Hashomer Medical Research Infrastructure and Services Ltd., The United States of America as represented by the Secretary of the Department of Health and Human Services National Institutes of Health Office of Technology Transfer
    Inventors: Shai Izraeli, Ilan R. Kirsch, Ayelet Erez, Stefano Campaner
  • Patent number: 8841818
    Abstract: An piezoelectric electromechanical transistor has first and second terminals formed in a semiconductor region, a gate and a piezoelectric region between the gate and the semiconductor region. The piezoelectric region may be configured to drive the semiconductor region to vibrate in response to a signal applied to the gate. The transistor may be configured to produce a signal at the first terminal at least partially based on vibration of the semiconductor region.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: September 23, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Radhika Marathe, Dana Weinstein
  • Patent number: 8842999
    Abstract: Provided is an optical network unit saving power. The optical network unit may include a processor checking whether at least one downward physical block, the upward physical block and a data switching block operate in an idle mode, sequentially transiting at least one downward physical block, an upward physical block and a data switching block to a sleep mode according to the checking result and sequentially transiting an optical transmission-reception block and the medium access control block to a sleep mode by judging whether or not a medium access control block transits to a sleep mode.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: September 23, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sung Chang Kim, Geun Yong Kim, Hark Yoo, Youngsuk Lee, Sim-Kwon Yoon, Jong Deog Kim
  • Patent number: 8843138
    Abstract: A method and an apparatus for controlling transmission power in a femto base station is provided. The method includes: predicting femto base station interference to be given from an adjacent femto base station to a terminal; predicting macro base station interference to be given from a macro base station to the terminal; determining transmission power for the terminal; and transmitting a downlink signal to the terminal on the basis of the transmission power, wherein the femto base station interference is predicted on the basis of a distance between serving femto base station and the adjacent femto base station and the transmission power of the adjacent femto base station, and the macro base station interference is predicted on the basis of a distance between serving femto base station and the macro base station and the transmission power of the macro base station.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: September 23, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Kyong Tak Cho, Jun Sik Kim, Seung Que Lee, Hyung Deug Bae, Sang Chul Oh, Nam Hoon Park
  • Patent number: 8840864
    Abstract: A method of preparing ZSM-5, including: providing a nanocrystalline ZSM-5 seed having a size of 70-150 nm; adding the nanocrystalline ZSM-5 seed to a stock solution including water glass as a silica source, an alumina source, a neutralizer and water to form a reaction mixture; and maintaining the reaction mixture at 150-200° C. to crystallize the reaction mixture. The method is advantageous in that ZSM-5 having small and uniform crystal sizes and including no impurities can be synthesized in a short period of time.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: September 23, 2014
    Assignees: SK Innovation., Ltd., Korea Research Institute of Chemical Technology
    Inventors: Sun Choi, Deuk Soo Park, Suk Joon Kim, Dae Hyun Choo, Yong Ki Park, Chul Wee Lee, Hee Young Kim, Won Choon Choi, Na Young Kang, Bu Sub Song
  • Patent number: 8842924
    Abstract: The present invention relates to an apparatus and method for encoding and decoding an image by skip encoding. The image-encoding method by skip encoding, which performs intra-prediction, comprises: performing a filtering operation on the signal which is reconstructed prior to an encoding object signal in an encoding object image; using the filtered reconstructed signal to generate a prediction signal for the encoding object signal; setting the generated prediction signal as a reconstruction signal for the encoding object signal; and not encoding the residual signal which can be generated on the basis of the difference between the encoding object signal and the prediction signal, thereby performing skip encoding on the encoding object signal.
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: September 23, 2014
    Assignees: Electronics and Telecommunications Research Institute, Kwangwoon University Industry-Academic Collaboration Foundation, University-Industry Cooperation Group of Kyung Hee University
    Inventors: Sung Chang Lim, Ha Hyun Lee, Se Yoon Jeong, Hui Yong Kim, Suk Hee Cho, Jong Ho Kim, Jin Ho Lee, Jin Soo Choi, Jin Woong Kim, Chie Teuk Ahn, Dong Gyu Sim, Seoung Jun Oh, Gwang Hoon Park, Sea Nae Park, Chan Woong Jeon
  • Patent number: 8841419
    Abstract: Hybridoma cell line 10G4 and monoclonal antibody against total aflatoxins produced by the hybridoma cell line 10G4. The hybridoma cell line 10G4 is used to produce the monoclonal antibody that binds specifically total aflatoxin B1, B2, G1 and G2. The titer of the mouse ascites antibody produced by the 10G4 treated mouse is determined through non-competitive enzyme-linked immunosorbent assay and the titer can reach up to 5.12×105. The monoclonal antibody against total aflatoxin B1, B2, G1 and G2 are used for better identification of aflatoxin B1, B2, G1 and G2 with good consistency. The 50% inhibitory concentrations (IC50) of the antibody against aflatoxin B1, B2, G1 and G2 are 2.09 ng/mL, 2.23 ng/mL, 2.19 ng/mL and 3.21 ng/mL respectively. The range of cross reaction rate for aflatoxin B1, B2, G1 and G2 is about 65.2%-100%. The antibody is used for quantitative measurement of total aflatoxin B1, B2, G1 and G2.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: September 23, 2014
    Assignee: Oilcrops Research Institute of Chinese Academy of Agriculture Sciences
    Inventors: Peiwu Li, Xin Li, Qi Zhang, Xiaoxia Ding, Wen Zhang, Ran Li, Zhaowei Zhang
  • Patent number: 8841113
    Abstract: The present invention relates to a method for producing lactic acid from plant biomass without requiring sterilization, and specifically relates to a method for producing lactic acid comprising culturing alkaliphilic lactic acid bacteria under non-sterile condition and at a pH of 9 to 11 in a medium containing a cellulose glycosylation solution and then further culturing the bacteria at a pH of 5 to 9.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: September 23, 2014
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Isao Yumoto, Kazuaki Yoshimune