Patents Assigned to INSTITUTE
  • Patent number: 11491228
    Abstract: Provided herein are polymers of Formula (I), and pharmaceutically acceptable salts, co-crystals, tautomers, stereoisomers, and isotopically labeled derivatives thereof, compositions, and formulations thereof. The polymers described herein are biocompatible, non-toxic, water compatible, and operationally simple to formulate. Also provided are methods and kits involving the polymers described herein (e.g., methods of using polymers described herein for delivering agents (e.g., for therapeutic, diagnostic, prophylactic, imaging, ophthalmic, intraoperative, or cosmetic use) to a subject, cell, tissue, or biological sample, as part of materials (e.g., biodegradable materials, biocompatible materials, wound dressing (e.g., bandages), drug depots, coatings), or as scaffolds for tissue engineering. Provided are methods for synthesizing the polymers described herein, and polymers described herein synthesized by the synthetic methods described herein.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: November 8, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Robert S. Langer, Owen Shea Fenton, Jason Andresen, Marion Paolini
  • Patent number: 11497033
    Abstract: Disclosed are a UE of a wireless communication system and a wireless communication method using the same. More particularly, the method including receiving scheduling information including resource allocation information, wherein the resource allocation information comprises a RIV determined based on the number of RBs of a first BWP, and transmitting or receiving data on a RB set corresponding to the RIV in a second BWP, wherein the number of RBs of the second BWP is greater than the number of RBs of the first BWP, the starting RB index S and the number of RBs of the RB set corresponding to the RIV in the second BWP are given in powers of 2 and a device for the same are disclosed.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: November 8, 2022
    Assignee: WILUS INSTITUTE OF STANDARDS AND TECHNOLOGY INC.
    Inventors: Kyungjun Choi, Minseok Noh, Jinsam Kwak
  • Patent number: 11494939
    Abstract: A system for self-calibrating sensors includes an electronic control unit, a first image sensor and a second image sensor communicatively coupled to the electronic control unit. The electronic control unit is configured to obtain a first image and a second image, where the first image and the second image contain an overlapping portion, determine an identity of an object present within the overlapping portion, obtain parameters of the identified object, determine a miscalibration of the first image sensor or the second image sensor based on a comparison of the identified object in the overlapping portions and the parameters of the identified object, in response to determining a miscalibration of the first image sensor or the second image sensor, calibrate the first image sensor or the second image sensor based on the parameters of the identified object and the second image or the first image, respectively.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: November 8, 2022
    Assignee: TOYOTA RESEARCH INSTITUTE, INC.
    Inventor: Wadim Kehl
  • Patent number: 11492906
    Abstract: A sprayer for settling dust of a coal mine includes: an outer housing, having at least one opening configured to spray water mist; a sprayer, placed in the outer housing, configured to spray water mist through the opening; a plurality of water curtain nozzles, configured to spray water curtain lines outside the opening to block suspended dust; and a support, configured to support the outer housing. The water curtain nozzles are in an equidistant arrangement around a center of the opening. A plurality of the water curtain nozzles are constructed such that the nozzles are all oriented toward the same point, to form a circular or conical water curtain.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: November 8, 2022
    Assignees: ANHUI UNIVERSITY OF SCIENCE AND TECHNOLOGY, PINGAN COAL MINING ENGINEERING RESEARCH INSTITUTE CO., LTD.
    Inventors: Liang Yuan, Bingyou Jiang, Qinghua Chen, Mingyun Tang, Jinwei Qiu, Bo Ren, Mingqing Su
  • Patent number: 11494642
    Abstract: A thickness prediction network learning method includes measuring spectrums of optical characteristics of a plurality of semiconductor structures each including a substrate and first and second semiconductor material layers alternately stacked thereon to generate sets of spectrum measurement data, measuring thicknesses of the first and second semiconductor material layers to generate sets of thickness data, training a simulation network using the sets of spectrum measurement data and the sets of thickness data, generating sets of spectrum simulation data of spectrums of the optical characteristics of a plurality of virtual semiconductor structures based on thicknesses of first and second virtual semiconductor material layers using the simulation network, each of the first and second virtual semiconductor layers including the same material as the first and second semiconductor material layers, respectively; and training a thickness prediction network by using the sets of spectrum measurement data and the sets
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: November 8, 2022
    Assignees: Samsung Electronics Co., Ltd., Korea Advanced Institute of Science and Technology
    Inventors: Su-il Cho, Sung-yoon Ryu, Yu-sin Yang, Chi-hoon Lee, Hyun-su Kwak, Jung-won Kim
  • Patent number: 11492616
    Abstract: The present invention discloses a method for modifying an amino acid attenuator, a class of amino acid attenuator mutants, engineered bacteria created on the basis of the amino acid attenuator mutants, and use of the engineered bacteria. The present invention protects a method for relieving the attenuation regulation of an amino acid operon gene, which is modification of the amino acid operon gene by: removing a gene coding for a leader peptide and an anterior reverse complementary palindromic sequence in the terminator stem-loop structure, and maintaining a posterior reverse complementary palindromic sequence in the terminator. The amino acid operon particularly can be histidine operon, tryptophan operon, phenylalanine operon, alanine operon, threonine operon and etc. The present invention can be used for the production of amino acids and derivatives thereof in fermentation by bacteria, providing a novel method for improving the production of amino acids in fermentation.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: November 8, 2022
    Assignee: Institute of Microbiology, Chinese Academy of Sciences
    Inventors: Tingyi Wen, Shuwen Liu, Yun Zhang, Xiuling Shang, Haihan Xiao
  • Patent number: 11492664
    Abstract: The present invention relates to methods of nucleic acid analyte detection by PCR. In particular, methods and kits for the detection of a plurality of nucleic acid analytes and the generation of kinetic signatures are provided. Further provided are methods and kits of nested PCR and PCR using limiting primers.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: November 8, 2022
    Assignee: California Institute of Technology
    Inventors: Aditya Rajagopal, Emil P. Kartalov
  • Patent number: 11492561
    Abstract: The present invention relates to a catalyst precursor for forming a molybdenum disulfide catalyst through a reaction with sulfur in heavy oil and to a method for hydrocracking heavy oil by using same. According to the present invention, the yield of a low-boiling liquid product with a high economic value in the products by heavy oil cracking can be increased, and the yield of a relatively uneconomical gas product or coke (toluene insoluble component), which is a byproduct, can be significantly lowered.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: November 8, 2022
    Assignees: KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY, INDUSTRY-ACADEMIC COOPERATION FOUNDATION OF SUNCHON NATIONAL UNIVERSITY
    Inventors: Sunyoung Park, Chul Wee Lee, Gyoo Tae Kim, Hwi Min Seo, Minehul Chung, Seok Hwan Son, Byong Min Choi
  • Patent number: 11491469
    Abstract: A high surface area to mass catalyst is formed by a method that includes a Kirigami mapped cutting of a flat three metal laminate composite formed on a deposition support. Kirigami derived catalyst has a shape that provides a high surface to mass ratio and promotes the flow of a fluid containing a reagent for a reaction catalyzed by the exterior metal catalyst films of the three metal laminate composite. Structural integrity of the Kirigami derived catalyst results from a support metal film residing between two metal catalyst films. The shaping to the Kirigami derived structure involves cutting the flat three metal laminate composite to that of a Kirigami map, imposing stress on the cut structure to force a non-planar deformation, and delaminating the Kirigami derived catalyst from the deposition support.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: November 8, 2022
    Assignee: Toyota Research Institute, Inc.
    Inventors: Abraham S. Anapolsky, Joseph Harold Montoya
  • Patent number: 11492622
    Abstract: The present disclosure, at least in part, relates to a miRNA based logic gate that comprises an engineered RNA carrier that comprises an nuclear export signal, a target site for a first miRNA and a pre-miRNA sequence for a second miRNA. Also provided by the disclosure are recombinant viruses (e.g., recombinant adeno-associated viruses (rAAV)) for delivery of the miRNA based logic gates.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: November 8, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Ron Weiss, Giulio Alighieri
  • Patent number: 11492325
    Abstract: Methods and small molecule compounds for inhibition of sodium channels are provided. One example of a class of compounds that may be used is represented by the compound of Formula (I) or a pharmaceutically acceptable salt, N-oxide or solvate thereof, wherein A, B, D, R, R1, R?1, R2, R3, R4, R5, R6, R7, R8 are as described herein.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: November 8, 2022
    Assignee: Human Biomolecular Research Institute
    Inventors: John R Cashman, Daniel J Ryan, Karl Okolotowicz
  • Patent number: 11491702
    Abstract: A method is disclosed for 3D printing of soft polymeric material such as a hydrogel or elastomer for scaffolds or devices with embedded channels with tunable shape and size such as a channel inner diameter). The method utilizes extrusion based printing of polymer solutions usually referred as direct ink writing (DIW) or BioPlotting, and requires sequential printing of a photocurable polymer solution, herein, referred as the matrix material, and a sacrificial polymer solution that may dissolve in an aqueous media.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: November 8, 2022
    Assignee: New Jersey Institute of Technology
    Inventors: Murat Guvendiren, Shen Ji
  • Patent number: 11496348
    Abstract: A method for receiving a wireless signal, performed by a first communication node, may comprise: storing a wireless signal received by the first communication node as samples in a buffer; performing partial correlation operations on the stored samples by a plurality of partial correlators; performing a first FFT operation on results of the partial correlation operations; performing a cumulative product operation on results of the first FFT operation; performing a second FFT operation based on a result of the cumulative product operation; and performing synchronization estimation based on the results of the first FFT operation and a result of the second FFT operation.
    Type: Grant
    Filed: October 5, 2021
    Date of Patent: November 8, 2022
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Soo Yeob Jung, Pan Soo Kim, Joon Gyu Ryu, Gyeong Rae Im, Dong Hyun Jung
  • Patent number: 11492018
    Abstract: A door system for a vacuum train includes at least one vehicle with at least one vehicle door and a track including at least one evacuated pipe that guides and propels elements within the pipe. The track includes at least one station outside of the pipe with at least one station door arranged within the wall of the pipe to selectively close and open the station towards the pipe. The vehicle door and the station door being arranged in a corresponding position when the vehicle is at rest, so that persons can leave or enter the vehicle when the vehicle door and the station doors are open at the rest position. The door system comprises at least one inflatable ring shaped seal (22) which surrounds both doors when the doors are in their corresponding position and which seals in its inflated position both doors against the vacuum within the pipes.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: November 8, 2022
    Assignee: SWISS TRANSPORTATION RESEARCH INSTITUTE AG
    Inventors: Ramon Alexander Bahman, Aurelius Christian Bahman
  • Patent number: 11492668
    Abstract: The invention discloses an indel molecular marker closely linked with pumpkin photoperiod insensitivity and application of the indel molecular marker, and belongs to the technical field of molecule detection. The indel molecular marker SEQ7593 is located on a tenth chromosome of a Cucurbita moschata, and is 280 bp in size. The nucleotide sequence of the indel molecular marker is shown as SEQ ID NO: 1. The indel molecular marker SEQ7593 can be directly used for creating an assistant breeding system of photoperiod insensitivity character molecular markers. Primer amplification designed according to the Indel molecular marker can be applied to assistant breeding of pumpkin breed improvement molecules in a simple, rapid and high-throughput manner, technical support is provided for pumpkin photoperiod insensitivity molecular breeding, and time for conventional gene positioning is shortened greatly.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: November 8, 2022
    Assignee: VEGETABLE RESEARCH INSTITUTE, GUANGDONG ACADEMY OF AGRICULTURAL SCIENCES
    Inventors: Yujuan Zhong, Hexun Huang, Junxing Li, Wenlong Luo, Tingquan Wu, Rui Wang
  • Patent number: 11492261
    Abstract: The present invention relates to a method using chemical reaction transparency of graphene, and more specifically to a method capable of forming a desired material by a catalytic reaction on a graphene surface using the graphene which inhibits oxygen diffusion without blocking electron delivery, and an applied method thereof.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: November 8, 2022
    Assignee: KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY
    Inventors: Won Jin Choi, Jeong-O Lee, Hyunju Chang, Ki-jeong Kong, Ki-Seok An
  • Patent number: 11495795
    Abstract: One example of the present invention provides a negative electrode material. Such a negative electrode material may comprise lithium titanium oxide-based particles and a graphene quantum dot coating layer doped with nitrogen that is positioned on the lithium titanium oxide-based particles.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: November 8, 2022
    Assignee: DAEGU GYEONGBUK INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Khan Firoz, Jae Hyeon Kim, Mi Sol Oh
  • Patent number: 11493496
    Abstract: Methods and systems for estimating a surface runoff based on a pixel scale are disclosed. In some embodiments, the method includes the following steps: (1) calculating a vegetation canopy interception water storage, a litterfall interception water storage, and a soil water storage according to an obtained original remote sensing dataset of a climate element in a study area; (2) calculating a vegetation-soil interception water conservation in the study area based on an established vegetation-soil interception water conservation estimation model according to the vegetation canopy interception water storage, the litterfall interception water storage, the soil water storage, and monthly precipitation; and (3) calculating a surface runoff in the study area based on an established water balance water conservation estimation model according to the monthly precipitation, monthly snowmelt, monthly actual evapotranspiration, and the vegetation-soil interception water conservation in the study area.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: November 8, 2022
    Assignee: Institute of Geochemistry, Chinese Academy of Sciences
    Inventors: Xiaoyong Bai, Shijie Wang, Luhua Wu, Fei Chen, Miao Zhou, Yichao Tian, Guangjie Luo, Qin Li, Jinfeng Wang, Yuanhuan Xie, Yujie Yang, Chaojun Li, Yuanhong Deng, Zeyin Hu, Shiqi Tian, Qian Lu, Chen Ran, Min Liu
  • Patent number: 11492670
    Abstract: The present invention relates to compositions and methods for targeting cancer-specific DNA sequences, such as copy number amplifications and other types of cancer-specific sequence variations, such as cancer-specific polymorphisms, insertions, or deletions. The present invention provides hereto sequence-specific DNA targeting agents targeting a sequence within the amplified DNA region or a sequence otherwise specific for a cancer cell compared to a non-cancer cell. The invention further relates to methods for treating cancer, comprising administering such sequence-specific DNA targeting agents. The invention further relates to methods for preparing sequence-specific DNA targeting agent, as well as screening methods using the DNA targeting agents.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: November 8, 2022
    Assignees: THE BROAD INSTITUTE INC., DANA-FARBER CANCER INSTITUTE, INC., INSTITUTO CARLOS SLIM DE LA SALUD, A.C.
    Inventors: William C. Hahn, Andrew Aguirre, April Cook, Glenn Cowley, Robin Meyers, David E. Root, Aviad Tsherniak, Barbara Weir, Francisca Vazquez
  • Patent number: RE49281
    Abstract: The invention provides compositions and methods of use in reprogramming somatic cells. Compositions and methods of the invention are of use, e.g., for generating or modulating (e.g., enhancing) generation of induced pluripotent stem cells by reprogramming somatic cells. The reprogrammed somatic cells are useful for a number of purposes, including treating or preventing a medical condition in an individual. The invention further provides methods for identifying an agent that reprograms somatic cells to a pluripotent state and/or enhances the speed and/or efficiency of reprogramming. Certain of the compositions and methods relate to modulating the Wnt pathway.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: November 8, 2022
    Assignee: Whitehead Institute for Biomedical Research
    Inventors: Brett Chevalier, Alexander Marson, Richard A. Young, Ruth Foreman, Rudolf Jaenisch