Abstract: Waveguide interconnects for semiconductor packages are disclosed. An example semiconductor package includes a first semiconductor die, a second semiconductor die, and a substrate positioned between the first and second dies. The substrate includes a waveguide interconnect to provide a communication channel to carry an electromagnetic signal. The waveguide interconnect is defined by a plurality of through substrate vias (TSVs). The TSVs in a pattern around the at least the portion of the substrate to define a boundary of the communication channel.
Abstract: Techniques are disclosed for forming integrated circuit structures having a plurality of semiconductor fins, which in turn can be used to form non-planar transistor structures. The techniques include a mid-process removal of one or more partially-formed fins. The resulting integrated circuit structure includes a plurality of semiconductor fins having relatively uniform dimensions (e.g., fin width and trough depth). In an embodiment, the fin forming procedure includes partially forming a plurality of fins, using a selective etch stop built into the semiconductor structure in which the fins are being formed. One or more of the partially-formed fins are removed via sacrificial fin cut mask layer(s). After fin removal, the process continues by further etching trenches between the partially-formed fins (deep etch) to form portion of fins that will ultimately include transistor channel portion. A liner material may be deposited to protect the partially-formed fins during this subsequent deep trench etch.
Type:
Grant
Filed:
June 30, 2023
Date of Patent:
April 1, 2025
Assignee:
Intel Corporation
Inventors:
Mehmet O. Baykan, Anurag Jain, Szuya S. Liao
Abstract: Methods, apparatus, systems and articles of manufacture to dynamically control devices based on distributed data are disclosed. An example apparatus includes a comparator to compare a first measurement measured by a first peer device to a second measurement, the second measurement being measured locally by the apparatus; and an operation adjuster to, when the comparison satisfies a threshold, adjust a measurement protocol of the first peer device.
Abstract: A dielectric layer and a method of forming thereof. An opening defined in a dielectric layer and a wire deposited within the opening, wherein the wire includes a core material surrounded by a jacket material, wherein the jacket material exhibits a first resistivity ?1 and the core material exhibits a second resistivity ?2 and ?2 is less than ?1.
Type:
Grant
Filed:
December 11, 2023
Date of Patent:
April 1, 2025
Assignee:
Intel Corporation
Inventors:
Hui Jae Yoo, Tejaswi K. Indukuri, Ramanan V. Chebiam, James S. Clarke
Abstract: In one embodiment, an apparatus includes a processor comprising at least one core to execute instructions of a plurality of virtual machines (VMs) and a virtual machine monitor (VMM), and a cryptographic engine to protect data associated with the plurality of VMs through use of a plurality of private keys and a trusted transformer key, where each of the plurality of private keys are to protect program instructions and data of a respective VM and the trusted transformer key is to protect management structure data for the plurality of VMs. The processor is further to provide, to the VMM, read and write access to the management structure data through an untrusted transformer key.
Abstract: An example computing device comprises a processor to be coupled to a display device, and a boot controller coupled to the processor and to be coupled to the display device. The boot controller is configured to detect a power signal, receive sensor data detected by one or more sensors prior to an operating system being loaded by a boot process of the processor, determine a posture associated with the display device based on the sensor data detected by the one or more sensors, and communicate, to the display device, posture information indicating the posture associated with the display device. Pre-boot content is to be displayed on a display panel of the display device in a first arrangement based on the posture information. In more specific embodiments, determining the posture includes determining at least an orientation of the display device and whether a peripheral is present on the display device.
Type:
Grant
Filed:
June 25, 2021
Date of Patent:
April 1, 2025
Assignee:
Intel Corporation
Inventors:
Vivek Paranjape, Royce Fernald, Arvind Singh Tomar, James M. Yoder, Jun Jiang
Abstract: Disclosed embodiments relate to systems for performing instructions to quickly convert and use matrices (tiles) as one-dimensional vectors. In one example, a processor includes fetch circuitry to fetch an instruction having fields to specify an opcode, locations of a two-dimensional (2D) matrix and a one-dimensional (1D) vector, and a group of elements comprising one of a row, part of a row, multiple rows, a column, part of a column, multiple columns, and a rectangular sub-tile of the specified 2D matrix, and wherein the opcode is to indicate a move of the specified group between the 2D matrix and the 1D vector, decode circuitry to decode the fetched instruction; and execution circuitry, responsive to the decoded instruction, when the opcode specifies a move from 1D, to move contents of the specified 1D vector to the specified group of elements.
Type:
Grant
Filed:
December 28, 2023
Date of Patent:
April 1, 2025
Assignee:
Intel Corporation
Inventors:
Bret Toll, Christopher J. Hughes, Dan Baum, Elmoustapha Ould-Ahmed-Vall, Raanan Sade, Robert Valentine, Mark J. Charney, Alexander F. Heinecke
Abstract: Disclosed herein are techniques to coordinate power management between a platform and a panel. Provided are apparatuses, techniques, and circuitry to determine whether to initiate power management features in a panel and send a signal from a platform to the panel including an indication that no frame updates are expected and power management functions can be initiated.
Abstract: Various aspects of methods, systems, and use cases include techniques for training or using a model to control a robot. A method may include identifying a set of action primitives applicable to a set of robots, receiving information corresponding to a task (e.g., a collaborative task), and determining at least one action primitive based on the received information. The method may include training a model to control operations of at least one robot of the set of robots using the received information and the at least one action primitive.
Type:
Grant
Filed:
March 26, 2021
Date of Patent:
April 1, 2025
Assignee:
Intel Corporation
Inventors:
Venkat Natarajan, Arjun Kg, Gagan Acharya, Amit Sudhir Baxi, Rita H. Wouhaybi, Wen-Ling Margaret Huang
Abstract: A processor includes a plurality of cores, at least two of which may execute redundantly, a configuration register to store a first synchronization domain indicator to indicate that a first core and a second core are associated with a first synchronization domain, and a power controller having a synchronization circuit to cause a dynamic adjustment to a frequency of at least one of the first and second cores to cause these cores to operate at a common frequency, based at least in part on the first synchronization domain indicator.
Abstract: Integrated circuit structures having a dielectric anchor void, and methods of fabricating integrated circuit structures having a dielectric anchor void, are described. For example, an integrated circuit structure includes a sub-fin in a shallow trench isolation (STI) structure. A plurality of horizontally stacked nanowires is over the sub-fin. A gate dielectric material layer is surrounding the horizontally stacked nanowires. A gate electrode structure is over the gate dielectric material layer. A dielectric anchor is laterally spaced apart from the plurality of horizontally stacked nanowires and recessed into a first portion of the STI structure. A second portion of the STI structure on a side of the plurality of horizontally stacked nanowires opposite the dielectric anchor has a trench therein. A dielectric gate plug is on the dielectric anchor.
Type:
Grant
Filed:
December 29, 2023
Date of Patent:
April 1, 2025
Assignee:
Intel Corporation
Inventors:
Leonard P. Guler, Charles H. Wallace, Tahir Ghani
Abstract: Apparatus and method for encoding sub-primitives to improve ray tracing efficiency. For example, one embodiment of an apparatus comprises: a ray generator to generate a plurality of rays in a ray tracing graphics pipeline; a sub-primitive generator to subdivide each primitive of a plurality of primitives into a plurality of sub-primitives; a sub-primitive encoder to identify a first subset of the plurality of sub-primitives as being fully transparent and to identify a second subset of the plurality of sub-primitives as being fully opaque; and wherein the first subset of the plurality of primitives identified as being fully transparent are culled prior to further processing of each respective primitive.
Abstract: A transistor includes a first channel layer over a second channel layer, where the first and the second channel layers include a monocrystalline transition metal dichalcogenide (TMD). The transistor structure further includes a source structure coupled to a first end of the first and second channel layers, a drain structure coupled to a second end of the first and second channel layers, a gate structure between the source material and the drain material, and between the first channel layer and the second channel layer. The transistor further includes a spacer laterally between the gate structure and the and the source structure and between the gate structure and the drain structure. A liner is between the spacer and the gate structure. The liner is in contact with the first channel layer and the second channel layer and extends between the gate structure and the respective source structure and the drain structure.
Abstract: A clock buffer that uses low-to-medium quality factor (e.g., QF of 2 to 5) inductors in shunt-series and in series-shunt configuration in high-speed clock distribution stages. Shunt-series and series-shunt inductors extend amplifier bandwidth. Applying shunt-series and series-shunt inductors to high-speed clock distribution filters jitter, attenuates supply noise, and improves fanout. An asymmetric multiplexer with inductors in shunt or in shunt-series configurations. Another asymmetric multiplexer with capacitively coupled tri-stateable inverter-based buffer stages. These two multiplexer techniques along with the ability to ‘hide’ a load of a non-preferred path at a virtual ground node of the shunt inductor, the multiplexer improves the jitter and power consumption of the preferred path significantly. A de-multiplexer (DeMux) is also shown using inductors. A combination of a shunt-multiplexer and an inductor-based DeMux is also discussed.
Type:
Grant
Filed:
June 3, 2021
Date of Patent:
April 1, 2025
Assignee:
Intel Corporation
Inventors:
Sandipan Kundu, Jihwan Kim, Ajay Balankutty, Bong Chan Kim, Yutao Liu, Frank O'Mahony
Abstract: Transistor structures with monocrystalline metal chalcogenide channel materials are formed from a plurality of template regions patterned over a substrate. A crystal of metal chalcogenide may be preferentially grown from a template region and the metal chalcogenide crystals then patterned into the channel region of a transistor. The template regions may be formed by nanometer-dimensioned patterning of a metal precursor, a growth promoter, a growth inhibitor, or a defected region. A metal precursor may be a metal oxide suitable, which is chalcogenated when exposed to a chalcogen precursor at elevated temperature, for example in a chemical vapor deposition process.
Type:
Grant
Filed:
December 21, 2020
Date of Patent:
April 1, 2025
Assignee:
Intel Corporation
Inventors:
Carl Naylor, Chelsey Dorow, Kevin O'Brien, Sudarat Lee, Kirby Maxey, Ashish Verma Penumatcha, Tanay Gosavi, Patrick Theofanis, Chia-Ching Lin, Uygar Avci, Matthew Metz, Shriram Shivaraman
Abstract: Disclosed embodiments are related to techniques for powering compute platforms in low temperature environments. Embodiments include a preheating stage that is added to a power up sequence. The preheating stage may include a force-on stage and a force-offstage. During the force-on stage, all power rails of target components are forced to an ON state so that the target components consume current. When a target operating temperature is reached, the power rails of the target components are turned off, which causes the target components to revert back to their initial (pre-boot) state allowing the normal boot process to take place. Since the target components are now heated up, the boot process can execute faster than when the target components were cold. Other embodiments may be described and/or claimed.
Type:
Grant
Filed:
June 26, 2020
Date of Patent:
April 1, 2025
Assignee:
Intel Corporation
Inventors:
Min Wu, Jun Zhang, Yuyang Xia, Dan Liu, Chao Zhou, Lianchang Du, Carrie Chen, Nishi Ahuja, Jason Crop, Wenqing Lv
Abstract: An apparatus comprising an interconnect comprising a conductive core; a first conductive layer connected to the conductive core and extending parallel to the conductive core towards a first end of the conductive core; a second conductive layer connected to the conductive core and extending parallel to the conductive core towards a second end of the conductive core; a first non-conductive layer between the conductive core and the first conductive layer; and a second non-conductive layer between the first conductive layer and the second conductive layer.
Type:
Grant
Filed:
September 24, 2021
Date of Patent:
April 1, 2025
Assignee:
Intel Corporation
Inventors:
Daqiao Du, Zhen Zhou, Ismael Franco Núñez, Gordon P. Melz
Abstract: Disclosed herein are capacitors and resistors at direct bonding interfaces in microelectronic assemblies, as well as related structures and techniques. For example, in some embodiments, a microelectronic assembly may include a first microelectronic component and a second microelectronic component, wherein a direct bonding interface of the second microelectronic component is direct bonded to a direct bonding interface of the first microelectronic component, the microelectronic assembly includes a sensor, the sensor includes a first sensor plate and a second sensor plate, the first sensor plate is at the direct bonding interface of the first microelectronic component, and the second sensor plate is at the direct bonding interface of the second microelectronic component.
Type:
Grant
Filed:
September 18, 2020
Date of Patent:
April 1, 2025
Assignee:
Intel Corporation
Inventors:
Adel A. Elsherbini, Mohammad Enamul Kabir, Zhiguo Qian, Gerald S. Pasdast, Kimin Jun, Shawna M. Liff, Johanna M. Swan, Aleksandar Aleksov, Feras Eid
Abstract: A memory device structure includes a vertical transistor having a channel between a source and a drain, a gate electrode adjacent the channel, where the gate electrode is in a first direction orthogonal to a longitudinal axis of the channel. A gate dielectric layer is between the gate electrode and the channel A first terminal of a first interconnect is coupled with the source or the drain, where the first interconnect is colinear with the longitudinal axis. The memory device structure further includes a pair of memory cells, where individual ones of the memory cells includes a selector and a memory element, where a first terminal of the individual ones of the memory cell is coupled to a respective second and a third terminal of the first interconnect. A second terminal of the individual ones of the memory cell is coupled to individual ones of the pair of second interconnects.
Type:
Grant
Filed:
December 10, 2020
Date of Patent:
April 1, 2025
Assignee:
Intel Corporation
Inventors:
Prashant Majhi, Derchang Kau, Max Hineman
Abstract: Embodiments described herein may be related to apparatuses, processes, and techniques related to packages that include CPUs and PICs electrically coupled via an interconnect bridge. In embodiments, the PIC are electrically coupled with the EMIB using a fan out RDL to extend reach of the PIC electrical connectors. EICs may be electrically coupled between the PIC and the interconnect bridge. The CPUs may be CPUS, graphical processing units (GPUs), field programmable gate arrays (FPGAs), or other processors. Other embodiments may be described and/or claimed.
Type:
Grant
Filed:
November 25, 2020
Date of Patent:
April 1, 2025
Assignee:
Intel Corporation
Inventors:
Susheel Jadhav, Kenneth Brown, David Hui, Ling Liao, Syed S. Islam