Patents Assigned to Intermolecular, Inc.
  • Patent number: 9425389
    Abstract: Provided are resistive random access memory (ReRAM) cells with embedded resistors and methods of fabricating these cells. An embedded resistor may include a metal silicon nitride of a first metal and may be doped with a second metal, which is different from the first metal. The second metal may have less affinity to form covalent bonds with nitrogen than the first metal. As such, the second metal may be unbound and more mobile in the embedded resistor that the first metal. The second metal may help establishing conductive paths in the embedded resistor in addition to the metal nitride resulting in more a stable resistivity despite changing potential applies to the ReRAM cell. In other words, the embedded resistor having such composition will have more linear I-V performance. The concentration of the second metal in the embedded resistor may be substantially less than the concentration of the first metal.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: August 23, 2016
    Assignee: Intermolecular, Inc.
    Inventor: Yun Wang
  • Patent number: 9423532
    Abstract: Embodiments provided herein describe coating formulations, such as those used to form optical coatings, panels having optical coatings thereon, and methods for forming optical coatings and panels. The coating formulation includes an aqueous-based suspension of particles. The particles have a sheet-like morphology and a thickness of less than about 10 nm. The coating also includes a polysiloxane or silane emulsion, a polysiloxane or silane solution, or a combination thereof.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: August 23, 2016
    Assignee: Intermolecular, Inc.
    Inventors: Scott Jewhurst, Nikhil Kalyankar
  • Patent number: 9416049
    Abstract: Embodiments provided herein describe low-e panels and methods for forming low-e panels. A transparent substrate is provided. A reflective layer is formed above the transparent substrate. A dielectric layer is formed between the transparent substrate and the reflective layer. The dielectric layer includes niobium, tin, and aluminum.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: August 16, 2016
    Assignee: Intermolecular, Inc.
    Inventors: Tong Ju, Jeremy Cheng, Guowen Ding, Minh Huu Le, Daniel Schweigert, Guizhen Zhang
  • Patent number: 9418865
    Abstract: Provided are methods for processing semiconductor substrates or, more specifically, etching silicon containing antireflective coatings (SiARCs) from the substrates while preserving silicon oxides layers disposed on the same substrates. An etching solution including sulfuric acid and hydrofluoric acid may be used for these purposes. In some embodiments, the weight ratio of sulfuric acid to hydrofluoric acid in the etching solution is between about 15:1 and 100:1 (e.g., about 60:1). The temperature of the etching solution may be between about 30° C. and 50° C. (e.g., about 40° C., during etching). It has been found that such processing conditions provide a SiARC etching rate of at least about 50 nanometers per minute and selectivity of SiARC over silicon oxide of greater than about 10:1 or even greater than about 50:1. The same etching solution may be also used to remove photoresist, organic dielectric, and titanium nitride.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: August 16, 2016
    Assignees: Intermolecular, Inc., International Business Machines Corporation
    Inventors: Gregory Nowling, John Fitzsimmons
  • Patent number: 9410359
    Abstract: Embodiments provided herein describe low-e panels and methods for forming low-e panels. A transparent substrate is provided. A low-e stack is formed above the transparent substrate. Each of the layers of the low-e stack are formed to have a specific thickness to tune the performance characteristics of the low-e panel.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: August 9, 2016
    Assignees: Intermolecular, Inc., Guardian Industries Corp.
    Inventors: Guowen Ding, Brent Boyce, Tong Ju, Minh Huu Le, Phil Lingle, Daniel Schweigert, Yongli Xu, Guizhen Zhang
  • Patent number: 9405046
    Abstract: Embodiments provided herein describe low-e panels and methods for forming low-e panels. A transparent substrate is provided. A reflective layer is formed above the transparent substrate. An over-coating layer is formed above the reflective layer. The over-coating layer includes first, second, and third sub-layers. The second sub-layer is between the first and third sub-layers, and the first and third sub-layers include the same material.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: August 2, 2016
    Assignee: Intermolecular, Inc.
    Inventors: Guowen Ding, Jeremy Cheng, Minh Huu Le, Daniel Schweigert, Zhi-Wen Sun, Guizhen Zhang
  • Patent number: 9408303
    Abstract: Coated articles are disclosed. The coated articles include a doped or alloyed silver layer sandwiched between two layers of transparent conductive oxide such as indium tin oxide (ITO). The doped silver or silver alloy layer can be thin, such as between 1. 5 to 20 nm and thus can be transparent. The doped silver or silver alloy can provide improved ductility property, allowing the conductive stack to be bendable. The transparent conductive oxide layers can also be thin, allowing the conductive stack can have improved ductility property.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: August 2, 2016
    Assignee: Intermolecular, Inc.
    Inventors: Mohd Fadzli Anwar Hassan, Guowen Ding, Minh Huu Le, Minh Anh Nguyen, Zhi-Wen Sun, Guizhen Zhang
  • Patent number: 9399753
    Abstract: A method for cleaning residues from a semiconductor substrate during a nickel platinum silicidation process is disclosed, including a multi-step residue cleaning, including exposing the substrate to an aqua regia solution, followed by an exposure to a solution having hydrochloric acid and hydrogen peroxide. The SC2 solution can further react with remaining platinum residues, rendering it more soluble in an aqueous solution and thereby dissolving it from the surface of the substrate.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: July 26, 2016
    Assignees: Intermolecular, Inc., GLOBALFOUNDRIES, INC.
    Inventors: Anh Duong, Clemens Fitz, Olov Karlsson
  • Patent number: 9397141
    Abstract: Selector devices that can be suitable for memory device applications can have low leakage currents at low voltages to reduce sneak current paths for non selected devices, and high leakage currents at high voltages to minimize voltage drops during device switching. In some embodiments, the selector device can include a first electrode, a tri-layer dielectric layer, and a second electrode. The tri-layer dielectric layer can include a high leakage dielectric layer sandwiched between two lower leakage dielectric layers. The low leakage layers can function to restrict the current flow across the selector device at low voltages. The high leakage dielectric layer can function to enhance the current flow across the selector device at high voltages.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: July 19, 2016
    Assignee: Intermolecular, Inc.
    Inventors: Imran Hashim, Venkat Ananthan, Tony P. Chiang, Prashant B. Phatak
  • Patent number: 9394198
    Abstract: Embodiments provided herein describe abrasion resistant glass coatings and methods for forming abrasion resistant glass coatings. A glass body is provided. An abrasion resistant layer is formed above the glass body. The abrasion resistant layer includes an amorphous carbon. A pull-up layer is formed above the abrasion resistant layer. A protective layer is formed above the pull-up layer. The protective layer may include a titanium-based nitride. The pull-up lay may include tungsten oxide, zirconium oxide, manganese oxide, molybdenum oxide, titanium oxide, or a combination thereof.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: July 19, 2016
    Assignee: Intermolecular, Inc.
    Inventors: Guowen Ding, Minh Huu Le
  • Patent number: 9397292
    Abstract: Resistive switching nonvolatile memory elements are provided. A metal-containing layer and an oxide layer for a memory element can be heated using rapid thermal annealing techniques. During heating, the oxide layer may decompose and react with the metal-containing layer. Oxygen from the decomposing oxide layer may form a metal oxide with metal from the metal-containing layer. The resulting metal oxide may exhibit resistive switching for the resistive switching memory elements.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: July 19, 2016
    Assignee: Intermolecular, Inc.
    Inventors: Pragati Kumar, Sean Barstow, Tony P. Chiang, Sunil Shanker
  • Patent number: 9391232
    Abstract: Provided are light emitting diodes (LEDs) and methods of fabricating such LEDs. An LED may include a transparent conductive oxide (TCO) layer having a varying refractive index. For example, the refractive index may be higher at the interface of the TCO layer with an epitaxial stack than on the side of the TCO layer. The refractive index variability allows reducing light intensity losses in the LED. The refractive index variability may be achieved by feeding a substrate through a deposition chamber having a variable concentration of at least one process gas, such as oxygen. Specifically, the concentration of the process gas may be higher at one slit opening than at another slit opening. As the substrate moves through the deposition chamber, the TCO layer is continuously deposited. Due to the concentration variability, the resulting TCO layer may have a variable composition throughout the thickness of the TCO layer.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: July 12, 2016
    Assignee: Intermolecular, Inc.
    Inventors: Minh Huu Le, Jianhua Hu
  • Patent number: 9373518
    Abstract: A method for combinatorially processing a substrate is provided. The method includes introducing a first etchant into a reactor cell and introducing a fluid into the reactor cell while the first etchant remains in the reactor cell. After initiating the introducing the fluid, contents of the reactor cell are removed through a first removal line and a second removal line, wherein the first removal line extends farther into the reactor cell than the second removal line. A level of the fluid above an inlet to the first removal line is maintained while removing the contents. A second etchant is introduced into the reactor cell while removing the contents through the first removal line and the second removal line. The method includes continuing the introducing of the second etchant until a concentration of the second etchant is at a desired level, wherein the surface of the substrate remains submerged.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: June 21, 2016
    Assignee: Intermolecular, Inc.
    Inventors: Edwin Adhiprakasha, Shuogang Huang
  • Patent number: 9368721
    Abstract: Selector elements that can be suitable for nonvolatile memory device applications are disclosed. The selector element can have low leakage currents at low voltages to reduce sneak current paths for non-selected devices, and higher leakage currents at higher voltages to minimize voltage drops during device switching. The selector element can be based on multilayer film stacks (e.g. metal-semiconductor-metal (MSM) stacks). A structure including diamond-like carbon (DLC) can be used to surround the semiconductor layer of the MSM stack. The high thermal conductivity of the DLC structure may serve to remove heat from the selector device while higher currents are flowing through the selector element. This may lead to improved reliability and improved endurance.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: June 14, 2016
    Assignee: Intermolecular, Inc.
    Inventors: Ashish Bodke, Mark Clark, Kevin Kashefi, Prashant B. Phatak
  • Patent number: 9365450
    Abstract: Low emissivity coated panels can be fabricated using a base layer having a low refractive index layer on a high refractive index layer. The low refractive index layer can have refractive index less than 1.5, and can include MgF2, CaF2, SiO2, or BO. The high refractive index layer can have refractive index greater than 2.3, and can include TiOx, NbOx, or BiOx. The multilayer base structure can allow color tuning with enhanced transmission, for example, as compared to similar structures having single layer base layer.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: June 14, 2016
    Assignees: Intermolecular, Inc., Guardian Industries, Corp.
    Inventors: Guowen Ding, Brent Boyce, Muhammad Imran, Minh Huu Le, Zhi-Wen Sun, Yu Wang, Yongli Xu
  • Patent number: 9368400
    Abstract: A masking layer is formed on a dielectric region of an electronic device so that, during subsequent formation of a capping layer on electrically conductive regions of the electronic device that are separated by the dielectric region, the masking layer inhibits formation of capping layer material on or in the dielectric region. The capping layer can be formed selectively on the electrically conductive regions or non-selectively; in either case, capping layer material formed over the dielectric region can subsequently be removed, thus ensuring that capping layer material is formed only on the electrically conductive regions. Silane-based materials, can be used to form the masking layer. The capping layer can be formed of an conductive material, a semiconductor material, or an insulative material, and can be formed using any appropriate process, including conventional deposition processes such as electroless deposition, chemical vapor deposition, physical vapor deposition or atomic layer deposition.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: June 14, 2016
    Assignee: Intermolecular, Inc.
    Inventors: Thomas R. Boussie, David E. Lazovsky, Sandra G. Malhotra
  • Patent number: 9362231
    Abstract: Methods for sealing a porous dielectric are presented including: receiving a substrate, the substrate including the porous dielectric; exposing the substrate to an organosilane, where the organosilane includes a hydrolysable group for facilitating attachment with the porous dielectric, and where the organosilane does not include an alkyl group; and forming a layer as a result of the exposing to seal the porous dielectric. In some embodiments, methods are presented where the organosilane includes: alkynyl groups, aryl groups, fluoroalkyl groups, heteroaryl groups, alcohol groups, thiol groups, amine groups, thiocarbamate groups, ester groups, ether groups, sulfide groups, and nitrile groups. In some embodiments, method further include: removing contamination from the porous dielectric and a conductive region of the substrate prior to the exposing; and removing contamination from the conductive region after the forming.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: June 7, 2016
    Assignee: Intermolecular, Inc.
    Inventors: Tony P. Chiang, Majid Keshavarz, David E Lazovsky
  • Patent number: 9362497
    Abstract: This disclosure provides a nonvolatile memory device and related methods of manufacture and operation. The device may include one or more resistive random access memory (ReRAM) approaches to provide a memory device with more predictable operation. In particular, the forming voltage required by particular designs may be reduced through the use of a barrier layer, a reverse polarity forming voltage pulse, a forming voltage pulse where electrons are injected from a lower work function electrode, or an anneal in a reducing environment. One or more of these techniques may be applied, depending on the desired application and results.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: June 7, 2016
    Assignee: Intermolecular, Inc.
    Inventors: Pragati Kumar, Tony P. Chiang, Prashant B Phatak, Yun Wang
  • Patent number: 9343675
    Abstract: Multistate nonvolatile memory elements are provided. The multistate nonvolatile memory elements contain multiple layers. Each layer may be based on a different bistable material. The bistable materials may be resistive switching materials such as resistive switching metal oxides. Optional conductor layers and current steering elements may be connected in series with the bistable resistive switching metal oxide layers.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: May 17, 2016
    Assignee: Intermolecular, Inc.
    Inventor: Tony P. Chiang
  • Patent number: 9343673
    Abstract: Embodiments of the invention generally relate to memory devices and methods for fabricating such memory devices. In one embodiment, a method for fabricating a resistive switching memory device includes depositing a metallic layer on a lower electrode disposed on a substrate and exposing the metallic layer to an activated oxygen source while heating the substrate to an oxidizing temperature within a range from about 300° C. to about 600° C. and forming a metal oxide layer from an upper portion of the metallic layer during an oxidation process. The lower electrode contains a silicon material and the metallic layer contains hafnium or zirconium. Subsequent to the oxidation process, the method further includes heating the substrate to an annealing temperature within a range from greater than 600° C. to about 850° C. while forming a metal silicide layer from a lower portion of the metallic layer during a silicidation process.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: May 17, 2016
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Dipankar Pramanik, Tony P. Chiang, Tim Minvielle, Takeshi Yamaguchi