Patents Assigned to Kemet Electronics
  • Patent number: 10515759
    Abstract: An MLCC with an identification mark consisting of non-active internal electrodes which can be used to determine chip orientation for mounting or reeling. This allows an MLCC with substantially similar width and thickness to be oriented with the electrodes in a preferred direction (either vertical or horizontal with respect to the board) that results in the minimum noise and vibration compared to other orientations. The presence of an identification mark can also allow for a means of preferentially orienting an MLCC which has an active area that is offset from the geometric center of the part.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: December 24, 2019
    Assignee: KEMET Electronics Corporation
    Inventors: Randal J. Vaughan, Gregory L. Crosby
  • Patent number: 10410794
    Abstract: An improved multilayer ceramic capacitor is described. The multilayered ceramic capacitor comprises first internal electrodes and second internal electrodes. The first internal electrodes and said second internal electrodes are parallel with dielectric there between. A first external termination is in electrical connection with the first internal electrodes and a second external termination is in electrical contact with the second internal electrodes. A closed void layer, comprising at least one closed void, is between electrodes.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: September 10, 2019
    Assignee: KEMET Electronics Corporation
    Inventor: John Bultitude
  • Patent number: 10403443
    Abstract: A solid electrolytic capacitor and method for forming a solid electrolytic capacitor with high temperature leakage stability is described. The solid electrolytic capacitor has improved leakage current and is especially well suited for high temperature environments such as down-hole applications.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: September 3, 2019
    Assignee: KEMET Electronics Corporation
    Inventors: Antony P. Chacko, Randolph S. Hahn, Pablo Antonio Ruiz
  • Patent number: 10381162
    Abstract: An electronic component is described wherein the electronic component comprises a stack of electronic elements comprising a transient liquid phase sintering adhesive between and in electrical contact with each said first external termination of adjacent electronic elements.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: August 13, 2019
    Assignee: KEMET Electronics Corporation
    Inventors: John E. McConnell, Garry L. Renner, John Bultitude, R. Allen Hill, Galen W. Miller
  • Patent number: 10381167
    Abstract: Provided herein is a capacitor, and method for forming a capacitor, comprising an anode, a dielectric over the anode; a cathode over the dielectric; and the cathode comprises core shell particles.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: August 13, 2019
    Assignee: KEMET Electronics Corporation
    Inventors: Antony P. Chacko, John Joseph Ols
  • Patent number: 10366836
    Abstract: An electronic device is described wherein the electronic device comprises a substrate with a first conductive metal layer and a second conductive metal layer. A first microphonic noise reduction structure is in electrical contact with the first conductive metal layer wherein the first microphonic noise reduction layer comprises at least one of the group consisting of a compliant non-metallic layer and a shock absorbing conductor comprising offset mounting tabs with a space there between coupled with at least one stress relieving portion. An electronic component comprising a first external termination of a first polarity and a second external termination of a second polarity is integral to the electronic device and the first microphonic noise reduction structure and the first external termination are adhesively bonded by a transient liquid phase sintering adhesive.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: July 30, 2019
    Assignee: KEMET Electronics Corporation
    Inventors: John Bultitude, John E. McConnell, Galen W. Miller
  • Patent number: 10340091
    Abstract: A capacitor and a method of making a capacitor, is provided with improved reliability performance. The capacitor comprises an anode; a dielectric on the anode; and a cathode on the dielectric wherein the cathode comprises a conductive polymer and a polyanion wherein the polyanion is a copolymer comprising groups A, B and C represented by Formula AxByCz as described herein.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: July 2, 2019
    Assignee: KEMET Electronics Corporation
    Inventors: Ajaykumar Bunha, Antony P. Chacko, Yaru Shi, Qingping Chen, Philip M. Lessner
  • Patent number: 10319529
    Abstract: A method of forming a capacitor is described as is an improved capacitor formed with a one-sided capacitor foil. The method includes: providing a foil comprising a conductive core and a high surface area on each side of a first side and a second side of the core; removing at least a portion of the high surface area on the first side of the core; and forming a conductive layer on the dielectric.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: June 11, 2019
    Assignee: KEMET Electronics Corporation
    Inventors: Yanming Liu, Jessica P. Love, Brandon Summey
  • Patent number: 10290429
    Abstract: An improved capacitor is provided wherein the capacitor has an improved bond between the anode and anode wire. The anode comprises a pressed anode powder comprising a first density region and a second density region wherein the second density region has a higher density than the first density region. An anode wire extends into the second density region wherein the anode wire in the second density region is distorted by compression. This allows for better utilization of the metal powder surface area by allowing a lower bulk press density and lower sinter temperature while still achieving the necessary wire pull strength. In addition, this invention when utilized with deoxidation steps, results in sufficient wire pull strengths not possible otherwise.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: May 14, 2019
    Assignee: KEMET Electronics Corporation
    Inventors: Christian L. Guerrero, Jeffrey Poltorak, Yuri Freeman, Steve C. Hussey, Chris Stolarski
  • Patent number: 10283276
    Abstract: An improved array of capacitors is provided wherein the improvement includes improved electrical properties and improved packing density. The array has an anode foil and a dielectric on a surface of the anode foil. A multiplicity of areas are defined on the dielectric wherein each area is circumvented by an isolation material and the isolation material extends through the dielectric. A conductive cathode layer in each area forms a capacitive couple. At least one substrate vacancy is in the anode foil and the substrate vacancy electrically isolates adjacent anodes of adjacent capacitive couples. A carrier film is attached to the capacitive couples.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: May 7, 2019
    Assignee: KEMET Electronics Corporation
    Inventors: Brandon Summey, Peter Blais, Yanming Liu
  • Patent number: 10242799
    Abstract: An improved process for preparing a conductive polymer dispersion is provided as is an improved method for making capacitors using the conductive polymer. The process includes providing a monomer solution and shearing the monomer solution with a rotor-stator mixing system comprising a perforated stator screen having perforations thereby forming droplets of said monomer. The droplets of monomer are then polymerized during shearing to form the conductive polymer dispersion.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: March 26, 2019
    Assignee: KEMET Electronics Corporation
    Inventors: Antony P. Chacko, Yaru Shi, John Ols
  • Patent number: 10229785
    Abstract: An improved capacitor utilizing stacked MLCC's is provided. The capacitor comprising at least one MLCC sandwiched between a first lead and a second lead. Each lead comprises at least one integral lead crimp.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: March 12, 2019
    Assignee: KEMET Electronics Corporation
    Inventors: John E. McConnell, Alan P. Webster, Lonnie G. Jones, Garry L. Renner, Jeffrey W. Bell
  • Patent number: 10224150
    Abstract: An improved capacitor is provided. The capacitor comprises an anode and a functional dielectric on said anode and a conductive layer on the functional dielectric. An anode wire extends from said anode wherein the anode wire has a thickened dielectric layer thereon.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: March 5, 2019
    Assignee: KEMET Electronics Corporation
    Inventors: Liancai Ning, Qun Ya
  • Patent number: 10224149
    Abstract: Provided is a module comprising a carrier material, comprising a first conductive portion and a second conductive portion, and a multiplicity of electronic components wherein each electronic component comprises a first external termination with at least one first longitudinal edge and a second external termination with at least one second longitudinal edge. A first longitudinal edge of a first electronic component is connected to the first conductive portion by a first interconnect; and a second longitudinal edge of the first electronic component is connected to the second conductive portion by a second interconnect.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: March 5, 2019
    Assignee: KEMET Electronics Corporation
    Inventors: Galen W. Miller, John E. McConnell, John Bultitude, Garry L. Renner
  • Patent number: 10204743
    Abstract: A capacitor, and method for making the capacitor, is provided with improved charging characteristics. The capacitor has an anode, a cathode comprising a conductive polymer layer and a work function modifier layer adjacent the conductive polymer layer and a dielectric layer between the anode and the cathode.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: February 12, 2019
    Assignee: KEMET Electronics Corporation
    Inventors: Antony P. Chacko, Yaru Shi, Robert Ramsbottom, John T. Kinard, John Joseph Ols
  • Patent number: 10199175
    Abstract: A method for manufacturing a solid electrolytic capacitor and an improved capacitor formed thereby is described. The method includes forming a dielectric on an anode at a formation voltage; forming a conductive polymer layer on the dielectric; and reforming the dielectric in a reformation electrolyte at a reformation voltage wherein the reformation electrolyte comprises a thermal degradation inhibitor.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: February 5, 2019
    Assignee: KEMET Electronics Corporation
    Inventors: Liancai Ning, Qingping Chen, Philip M. Lessner
  • Patent number: 10181382
    Abstract: A solid electrolytic capacitor includes a capacitor element and a plated layer. The capacitor element has a predetermined surface and outer peripheral surface other than the predetermined surface. The capacitor element includes an anode body, an anode lead wire and a cathode layer. The predetermined surface is perpendicular to a predetermined direction. The anode lead wire extends from the anode body along the predetermined direction through the predetermined surface. The cathode layer includes a solid electrolyte layer and forms the outer peripheral surface and a part of the predetermined surface. The plated layer completely covers the outer peripheral surface and the part of the predetermined surface.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: January 15, 2019
    Assignees: TOKIN CORPORATION, KEMET ELECTRONICS CORPORATION
    Inventors: Kenji Araki, Takashi Kono, Takashi Mihara, Yoshihiko Saiki
  • Patent number: 10178770
    Abstract: A high density multi-component package is provided. The package has at least two electronic components wherein each electronic component comprises a first external termination and a second external termination. At least one first adhesive is between adjacent first external terminations of adjacent electronic components. At least one second adhesive is between the adjacent electronic component and at least two adjacent electronic components are connected serially. The first adhesive and second adhesive are independently selected from a high temperature conductive adhesive and a high temperature insulating adhesive.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: January 8, 2019
    Assignee: KEMET Electronics Corporation
    Inventors: James A Burk, John Bultitude, Galen Miller
  • Patent number: 10147544
    Abstract: An improved multilayered ceramic capacitor is provided wherein the capacitor has improved heat dissipation properties. The capacitor comprises first internal electrodes and second internal electrodes wherein the first internal electrodes are parallel with, and of opposite polarity, to the second internal electrodes. Dielectric layers are between the first internal electrodes and second internal electrodes and a thermal dissipation channel is in at least one dielectric layer. A thermal transfer medium is in the thermal dissipation channel.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: December 4, 2018
    Assignee: KEMET Electronics Corporation
    Inventors: John Bultitude, Philip M. Lessner, Abhijit Gurav
  • Patent number: RE47373
    Abstract: A method for forming a hermetically sealed capacitor including: forming an anode; forming a dielectric on the anode; forming a conductive layer on the dielectric thereby forming a capacitive element; inserting the capacitive element into a casing; electrically connecting the anode to an exterior anode connection; electrically connecting the cathode to an exterior cathode connection; filling the casing with an atmosphere comprising a composition, based on 1 kg of atmosphere, of at least 175 g to no more than 245 g of oxygen, at least 7 g to no more than 11 g of water, at least 734 grams to no more than 818 grams of nitrogen and no more than 10 grams of a minor component; and hermetically sealing the casing with the atmosphere with the capacitive element contained in the casing.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: April 30, 2019
    Assignee: KEMET Electronics Corporation
    Inventors: Qingping Chen, Yuri Freeman, Steven C. Hussey