Patents Assigned to Kobelco Research Institute, Inc.
  • Patent number: 9023746
    Abstract: Provided is an oxide sintered body suitably used for the production of an oxide semiconductor film for a display device, wherein the oxide sintered body has both high conductivity and relative density, and is capable of depositing an oxide semiconductor film having high carrier mobility. This oxide sintered body is obtained by mixing and sintering powders of zinc oxide, tin oxide and indium oxide, and when an EPMA in-plane compositional mapping is performed on the oxide sintered body the percentage of the area in which Sn concentration is 10 to 50 mass % in the measurement area is 70 area percent or more.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: May 5, 2015
    Assignee: Kobelco Research Institute, Inc.
    Inventors: Yuki Iwasaki, Hiroshi Goto, Moriyoshi Kanamaru
  • Publication number: 20150041312
    Abstract: Provided is a Li-containing phosphoric-acid compound sintered body of both high relative density and very small crystal grain diameter with reduced incidence of defects (voids) such as air holes, the Li-containing phosphoric-acid compound sintered body causing a Li-containing phosphoric-acid compound thin film useful as a solid electrolyte for a secondary cell or the like to be stabilized without any incidence of target cracking or irregular electrical discharge, and offering high-speed film-forming capability. This Li-containing phosphoric-acid compound sintered body contains no defects measuring 50 ?m or larger within a 1 mm2 cross-sectional region in the interior thereof, while having an average crystal grain diameter of no more than 15 ?m and a relative density of at least 85%.
    Type: Application
    Filed: April 10, 2013
    Publication date: February 12, 2015
    Applicant: KOBELCO RESEARCH INSTITUTE, INC.
    Inventors: Yuichi Taketomi, Yuki Tao, Moriyoshi Kanamaru
  • Patent number: 8952338
    Abstract: The present invention provides a crystalline quality evaluation apparatus (1) and a crystalline quality evaluation method for thin-film semiconductors, which are designed to evaluate crystalline quality of a sample (2) of a thin-film semiconductor (2a) by emitting excitation light and an electromagnetic wave to irradiate a measurement site of the sample (2), and detecting an intensity of a reflected electromagnetic wave from the sample (2). In the present invention, the thin-film semiconductor (2a) of the sample (2) is formed on an electrically conductive film (2b), and a dielectric (3) transparent to the excitation light is additionally disposed between the sample (2) and a waveguide (13) for emitting the electromagnetic wave therefrom.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: February 10, 2015
    Assignees: Kobe Steel, Ltd., Kobelco Research Institute Inc.
    Inventors: Naokazu Sakoda, Hiroyuki Takamatsu, Masahiro Inui, Futoshi Ojima
  • Publication number: 20150014157
    Abstract: The Li-containing transition metal oxide sintered compact of the present invention includes Li and a transition metal, and further includes Al, Si, Zr, Ca, and Y as impurity elements, of which contents are controlled to the following ranges: Al?90 ppm; Si?100 ppm; Zr?100 ppm; Ca?80 ppm; and Y?20 ppm, wherein the sintered compact has a relative density of 95% or higher and a specific resistance of lower than 2×107 ?cm. The present invention makes it possible to stably form Li-containing transition metal oxide thin films useful as the positive electrode thin films of secondary batteries or the like at a high deposition rate without causing abnormal discharge.
    Type: Application
    Filed: March 19, 2013
    Publication date: January 15, 2015
    Applicants: KOBELCO RESEARCH INSTITUTE, INC., Toshima Manufacturing Co., Ltd.
    Inventors: Yuichi Taketomi, Yuki Tao, Moriyoshi Kanamaru, Kenji Sakai, Shuetsu Haseyama, Hideshi Kikuyama
  • Publication number: 20140165988
    Abstract: Provided is a resin-coated saw wire that, when used to cut a workpiece, has a shallow depth of a damaged layer and can give a cut article having a smooth surface. The resin-coated saw wire is used in cutting of the workpiece using a sawing machine and includes a steel wire and a resin coating covering the steel wire surface. The resin coating contains substantially no abrasive grain, has a hardness at 120° C. of 0.07 GPa or more, and has a hardness controlled so as to prevent abrasive grains from coming into the resin coating, which abrasive grains are sprayed during workpiece cutting.
    Type: Application
    Filed: August 17, 2012
    Publication date: June 19, 2014
    Applicant: KOBELCO RESEARCH INSTITUTE, INC.
    Inventors: Kazuo Yoshikawa, Hiroshi Yaguchi, Kazuhisa Fujisawa, Masanori Anan, Akinori Uratsuka, Yoshitake Matsushima
  • Patent number: 8649019
    Abstract: A shape determining device includes first and second homodyne interferometers respectively provided for front and back surfaces of an object to be measured and a thickness distribution calculator that calculates a thickness distribution of the object based on intensities of first and second interference light beams respectively detected by the first and second homodyne interferometers for the front and back surfaces of the object at a plurality of measurement sites. The thickness distribution calculator calculates, for each interference light beam for which the intensity is detected by the first and second homodyne interferometers, a phase difference between the polarization components of a corresponding reference light beam and a corresponding object light beam in a corresponding non-interference light beam based on the intensity of the interference light beam, and calculates the thickness distribution based on a distribution of the calculated phase differences.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: February 11, 2014
    Assignees: Kobe Steel, Ltd., Kobelco Research Institute, Inc.
    Inventors: Masato Kannaka, Eiji Takahashi, Masakazu Kajita, Hideki Matsuoka, Hidetoshi Tsunaki, Noritaka Morioka, Kazuhiko Tahara, Takuya Atsumi
  • Publication number: 20130341183
    Abstract: Provided are an oxide sintered body and a sputtering target that are ideal for the production of an oxide semiconductor film for a display device. The oxide sintered body and sputtering target that are provided have both high conductivity and high relative density, are capable of forming an oxide semiconductor film having a high carrier mobility, and in particular, have excellent direct-current discharge stability in that long-term, stable discharge is possible, even when used by the direct-current sputtering method. The oxide sintered body of the invention is an oxide sintered body obtained by mixing and sintering zinc oxide, tin oxide, and an oxide of at least one metal (M metal) selected from the group consisting of Al, Hf, Ni, Si, Ga, In, and Ta. When the in-plane specific resistance and the specific resistance in the direction of depth are approximated by Gaussian distribution, the distribution coefficient ? of the specific resistance is 0.02 or less.
    Type: Application
    Filed: March 1, 2012
    Publication date: December 26, 2013
    Applicant: Kobelco Research Institute Inc.
    Inventors: Hiroshi Goto, Yuki Iwasaki
  • Publication number: 20130334039
    Abstract: Provided are an oxide sintered body and a sputtering target which are suitable for use in producing an oxide semiconductor film for display devices and combine high electroconductivity with a high relative density and with which it is possible to form an oxide semiconductor film having a high carrier mobility. In particular, even when used in production by a direct-current sputtering method, the oxide sintered body and the sputtering target are less apt to generate nodules and have excellent direct-current discharge stability which renders long-term stable discharge possible. This oxide sintered body is an oxide sintered body obtained by mixing zinc oxide, tin oxide, and an oxide of at least one metal (M metal) selected from the group consisting of Al, Hf, Ni, Si, Ga, In, and Ta, and sintering the mixture, the oxide sintered body having a Vickers hardness of 400 Hv or higher.
    Type: Application
    Filed: March 1, 2012
    Publication date: December 19, 2013
    Applicant: KOBELCO RESEARCH INSTITUTE, INC.
    Inventors: Hiroshi Goto, Yuki Iwasaki
  • Publication number: 20130313110
    Abstract: Provided is an oxide sintered body suitably used for the production of an oxide semiconductor film for a display device, wherein the oxide sintered body has both high conductivity and relative density, and is capable of depositing an oxide semiconductor film having high carrier mobility. This oxide sintered body is obtained by mixing and sintering powders of zinc oxide, tin oxide and indium oxide, and when an EPMA in-plane compositional mapping is performed on the oxide sintered body the percentage of the area in which Sn concentration is 10 to 50 mass % in the measurement area is 70 area percent or more.
    Type: Application
    Filed: February 9, 2012
    Publication date: November 28, 2013
    Applicant: KOBELCO RESEARCH INSTITUTE, INC.
    Inventors: Yuki Iwasaki, Hiroshi Goto, Moriyoshi Kanamaru
  • Publication number: 20130306469
    Abstract: Provided is an oxide sintered body suitably used for producing an oxide semiconductor film for a display device, the oxide sintered body capable of forming an oxide semiconductor film exerting excellent conductivity, having high relative density and excellent in-plane uniformity, and exhibiting high carrier mobility. This oxide sintered body is obtained by combining and sintering a zinc oxide powder, a tin oxide powder, and an indium oxide powder. The oxide sintered body satisfies the following equation (1) when the oxide sintered body is subjected to X-ray diffraction, Equation (1): [A/(A+B+C+D)]×100?70. In equation (1), A represents the XRD peak intensity in the vicinity of 2?=34°, B represents the XRD peak intensity in the vicinity of 2?=31°, C represents the XRD peak intensity in the vicinity of 2?=35°, and D represents the XRD peak intensity in the vicinity of 2?=26.5°.
    Type: Application
    Filed: February 9, 2012
    Publication date: November 21, 2013
    Applicant: KOBELCO RESEARCH INSTITUTE, INC.
    Inventors: Moriyoshi Kanamaru, Yuki Iwasaki, Minoru Matsui, Hiroshi Goto, Akira Nambu
  • Publication number: 20130306468
    Abstract: Film-formation rate can be increased in the pre-sputtering and in the subsequent sputtering onto a substrate or the like, and sputtering failures such as splashes can be inhibited, by making an Al-based alloy or Cu-based alloy spurting target fulfill the following requirements (1) and/or (2) when the total area ratio of crystal orientations <001>±15°, <011>±15°, <111>±15°, <112>±15°, and <012>±15° in the sputtering surface normal direction in the depth within 1 mm from the uppermost surface of the sputtering target is referred to as a P value: (1) the area ratio PA of <011>±15° to the P value: 40% or lower; and (2) the total area ratio PB of <001>±15° and <111>±15° to the P value: 20% or higher.
    Type: Application
    Filed: December 20, 2011
    Publication date: November 21, 2013
    Applicants: KOBELCO RESEARCH INSTITUTE, INC., KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.)
    Inventors: Katsushi Matsumoto, Junichi Nakai, Toshiaki Takagi
  • Patent number: 8580093
    Abstract: The present invention provides a technique capable of decreasing a generation of splashing upon depositing by using an Al—Ni—La—Cu alloy sputtering target comprising Ni, La, and Cu. The invention relates to an Al—Ni—La—Cu alloy sputtering target comprising Ni, La and Cu, in which (1) a total area of an Al—Ni intermetallic compound mainly comprising Al and Ni and having an average grain size of 0.3 ?m or more and 3 ?m or less is 70% or more by area ratio based on an entire area of the Al—Ni intermetallic compound, and (2) a total area of an Al—La—Cu intermetallic compound mainly comprising Al, La and Cu and having an average grain size of 0.2 ?m or more and 2 ?m or less is 70% or more by area ratio based on an entire area of the Al—La—Cu intermetallic compound, in a case where a portion of the sputtering target is observed within a range of from ¼t (t: thickness) to ¾t along a cross section vertical to a plane of the sputtering target by using a scanning electron microscope at a magnification of 2000.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: November 12, 2013
    Assignees: Kobelco Research Institute Inc., Kobe Steel, Ltd.
    Inventors: Katsutoshi Takagi, Masaya Ehira, Yuki Iwasaki, Hiroshi Goto
  • Publication number: 20130234081
    Abstract: This oxide sintered compact is obtained by mixing and sintering powders of zinc oxide, tin oxide and indium oxide. As determined by X-ray diffractometry of this oxide sintered compact, the oxide sintered compact has a Zn2SnO4 phase as the main phase and contains an In/In2O3—ZnSnO3 solid solution wherein In and/or In2O3 is solid-solved in ZnSnO3, but a ZnxInyOz phase (wherein x, y and z each represents an arbitrary positive integer) is not detected. Consequently, the present invention was able to provide an oxide sintered compact which is suitable for use in the production of an oxide semiconductor film for display devices and has both high electrical conductivity and high relative density. The oxide sintered compact is capable of forming an oxide semiconductor film that has high carrier mobility.
    Type: Application
    Filed: November 11, 2011
    Publication date: September 12, 2013
    Applicant: KOBELCO RESEARCH INSTITUTE, INC.
    Inventors: Hiroshi Goto, Yuki Iwasaki, Masaya Ehira, Yoichiro Yoneda
  • Publication number: 20130233706
    Abstract: There is provided an Al-based alloy sputtering target, which can provide an enhanced deposition rate (or sputtering rate) when the sputtering target is used, and which can preferably prevent the occurrence of splashes. The Al-based alloy sputtering target of the present invention includes Ta and may preferably include an Al—Ta-based intermetallic compound containing Al and Ta, which compound has a mean particle diameter of from 0.005 ?m to 1.0 ?m and a mean interparticle distance of from 0.01 ?m to 10.0 ?m.
    Type: Application
    Filed: October 5, 2011
    Publication date: September 12, 2013
    Applicants: Kobelco Research Institute Inc., Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Katsushi Matsumoto, Katsutoshi Takagi, Yuichi Taketomi, Junichi Nakai, Hidetada Makino, Toshiaki Takagi
  • Publication number: 20130222005
    Abstract: The present invention provides a contact probe pin in which a carbon film having both of conductivity and durability is formed on a base material with a tip divided, wherein Sn adherence can be reduced as much as possible to be able to maintain stable electrical contact over a long period of time, even under such circumstances that the temperature of a usage environment becomes high. The present invention relates to a contact probe pin, including a tip divided into 2 or more projections and repeatedly coming into contact with a test surface at the projection, wherein a carbon film containing a metal element is formed at least on a surface of the projection, and a radius of curvature at an apex part of the projection is 30 ?m or more.
    Type: Application
    Filed: November 16, 2011
    Publication date: August 29, 2013
    Applicants: Kobelco Research Institute, Inc., Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Takayuki Hirano, Takashi Kobori
  • Publication number: 20130153778
    Abstract: The present invention provides a crystalline quality evaluation apparatus (1) and a crystalline quality evaluation method for thin-film semiconductors, which are designed to evaluate crystalline quality of a sample (2) of a thin-film semiconductor (2a) by emitting excitation light and an electromagnetic wave to irradiate a measurement site of the sample (2), and detecting an intensity of a reflected electromagnetic wave from the sample (2). In the present invention, the thin-film semiconductor (2a) of the sample (2) is formed on an electrically conductive film (2b), and a dielectric (3) transparent to the excitation light is additionally disposed between the sample (2) and a waveguide (13) for emitting the electromagnetic wave therefrom.
    Type: Application
    Filed: September 1, 2011
    Publication date: June 20, 2013
    Applicants: KOBELCO RESEARCH INSTITUTE, INC., KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.)
    Inventors: Naokazu Sakoda, Hiroyuki Takamatsu, Masahiro Inui, Futoshi Ojima
  • Publication number: 20130139950
    Abstract: A rotational misalignment between semiconductor wafers constituting a bonded wafer is calculated. A light source is arranged at a position which is on a front side of an opening of a notch and which is separated from an outer edge portion of a bonded wafer by a predetermined interval, and outputs light to irradiate the outer edge portion of the bonded wafer including the notch. A camera receives and photoelectrically converts reflected light that is specularly-reflected by the outer edge portion of the bonded wafer including the notch among the light outputted by the light source in order to output a brightness distribution of the reflected light as an image. A computer analyzes positions of notches from the image outputted by the camera to obtain a notch position misalignment, and further calculates a rotational misalignment between semiconductor wafers using a center position misalignment between the semiconductor wafers.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 6, 2013
    Applicants: Kobelco Research Institute, Inc., Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Masato KANNAKA, Masakazu Kajita, Eiji Takahashi, Yuji Yamamoto, Masaru Akamatsu, Kunio Iba, Kenji Imanishi
  • Publication number: 20130098758
    Abstract: The present invention provides a Cu—In—Ga—Se powder containing Cu, In, Ga and Se in which cracks do not occur during sintering or processing, and a sintered body and sputtering target, each using the same. The present invention relates to a powder containing Cu, In Ga and Se, which contains a Cu—In—Ga—Se compound and/or a Cu—In—Se compound in an amount of 60 mass % or more in total. The powder of the present invention preferably contains an In—Se compound in an amount of 20 mass % or less and/or a Cu—In compound in an amount of 20 mass % or less.
    Type: Application
    Filed: June 27, 2011
    Publication date: April 25, 2013
    Applicants: HYOGO PREFECTURE, KOBELCO RESEARCH INSTITUTE, INC.
    Inventors: Masaya Ehira, Akira Nambu, Shigeo Kashiwai, Masafumi Fukuzumi
  • Patent number: 8410367
    Abstract: Provided is an electric contact member which reduces, to the utmost, peel-off of a carbon film that is caused at the time of use of the electric contact member having at least an edge to keep stable electric contact over a long period of time. Disclosed is an electric contact member which repeatedly contacts with a device under test at a tip part of the electric contact member in which the tip part has an edge, the electric contact member comprising: a base material; an underlying layer comprising Au, Au alloy, Pd or Pd alloy, which is formed on a surface of the base material of the tip part; an intermediate layer which is formed on a surface of the underlying layer; and a carbon film comprising at least one of a metal and a carbide thereof which is formed on a surface of the intermediate layer, wherein the intermediate layer has a lamination structure comprising: an inner layer comprising Ni or Ni alloy; and an outer layer comprising at least one of Cr, Cr alloy, W and W alloy.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: April 2, 2013
    Assignees: Kobe Steel, Ltd., Kobelco Research Institute, Inc.
    Inventors: Takayuki Hirano, Akashi Yamaguchi, Takashi Miyamoto
  • Patent number: RE44239
    Abstract: Disclosed is an electrode for semiconductor devices capable of suppressing the generation of hillocks and reducing the resistivity, which is suitable for an active matrixed liquid crystal display and the like in which a thin film transistor is used; its fabrication method; and a sputtering target for forming the electrode film for semiconductor devices. The electrode for semiconductor devices is made of an Al alloy containing the one or more alloying elements selected from Fe, Co, Ni, Ru, Rh and Ir, in a total amount from 0.1 to 10 At %, or one or more alloying elements selected from rare earth elements, in a total amount from 0.05 to 15 at %.
    Type: Grant
    Filed: May 9, 2006
    Date of Patent: May 28, 2013
    Assignee: Kobelco Research Institute, Inc.
    Inventors: Seigo Yamamoto, Katsutoshi Takagi, Eiji Iwamura, Kazuo Yoshikawa, Takashi Oonishi