Patents Assigned to Lam Research
  • Patent number: 11887819
    Abstract: In one embodiment, a plasma processing device may include a dielectric window, a vacuum chamber, an energy source, and at least one air amplifier. The dielectric window may include a plasma exposed surface and an air exposed surface. The vacuum chamber and the plasma exposed surface of the dielectric window can cooperate to enclose a plasma processing gas. The energy source can transmit electromagnetic energy through the dielectric window and form an elevated temperature region in the dielectric window. The at least one air amplifier can be in fluid communication with the dielectric window. The at least one air amplifier can operate at a back pressure of at least about 1 in-H2O and can provide at least about 30 cfm of air.
    Type: Grant
    Filed: October 5, 2022
    Date of Patent: January 30, 2024
    Assignee: Lam Research Corporation
    Inventors: Jon McChesney, Saravanapriyan Sriraman, Richard A. Marsh, Alexander Miller Paterson, John Holland
  • Patent number: 11887846
    Abstract: An Atomic Layer Deposition (ALD) method to deposit a metal oxide layer onto an organic photoresist on a substrate using a highly reactive organic metal precursor. The deposition method protects the organic photoresist from loss and degradation from exposure to oxygen species during subsequent ALD cycles. The organic metal precursor may be an amino type precursor or a methoxy type precursor.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: January 30, 2024
    Assignee: Lam Research Corporation
    Inventors: Akhil Singhal, Patrick Van Cleemput
  • Patent number: 11885750
    Abstract: In some examples, a wafer bow measurement system comprises a measurement unit including: a wafer support assembly to impart rotational movement to a measured wafer supported in the measurement unit; an optical sensor; a calibration standard to calibrate the optical sensor; a linear stage actuator to impart linear direction of movement to the optical sensor; a wafer centering sensor to determine a centering of the measured wafer supported in the measurement unit; and a wafer alignment sensor to determine an alignment of the measured wafer supported in the measurement unit.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: January 30, 2024
    Assignee: Lam Research Corporation
    Inventors: Rajan Arora, Michael Souza, Wayne Tang, Yassine Kabouzi, Ye Feng
  • Patent number: 11881381
    Abstract: A method and an apparatus of plasma-assisted semiconductor processing is provided. The method comprises: a) providing substrates at each of the multiple stations; b) distributing RF power including a first target frequency to multiple stations to thereby generate a plasma in the stations, wherein the RF power is distributed according to a RF power parameter configured to reduce station to station variations; c) tuning an impedance matching circuit for a first station included in the multiple stations while distributing RF power to the first station by: i) measuring a capacitance of a capacitor in the impedance matching circuit without disconnecting the capacitor from the impedance matching circuit; and ii) adjusting, according to the capacitance measured in (i) and the RF power parameter, a capacitance of the capacitor; and d) performing a semiconductor processing operation on the substrate at each station.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: January 23, 2024
    Assignee: Lam Research Corporation
    Inventors: Sunil Kapoor, Thomas Frederick
  • Patent number: 11869794
    Abstract: A substrate support for a plasma chamber includes a base plate arranged along a plane, a first layer of an electrically insulating material arranged on the base plate along the plane, a plurality of heating elements arranged in the first layer along the plane, and a plurality of diodes arranged in respective cavities in the first layer. The plurality of diodes are connected in series to the plurality of heating elements, respectively. Each of the plurality of diodes includes a die of a semiconductor material arranged in a respective one of the cavities. The semiconductor material has a first coefficient of thermal expansion. A first side of the die is arranged on the first layer along the plane. A first terminal of the die is connected to a first electrical contact on the first layer.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: January 9, 2024
    Assignee: Lam Research Corporation
    Inventor: Siyuan Tian
  • Patent number: 11869770
    Abstract: Methods, systems, and computer programs are presented for selective deposition of etch-stop layers for enhanced patterning during semiconductor manufacturing. One method includes an operation for adding a photo-resist material (M2) on top of a base material (M1) of a substrate, M2 defining a pattern for etching M1 in areas where M2 is not present above M1. The method further includes operations for conformally capping the substrate with an oxide material (M3) after adding M2, and for gap filling the substrate with filling material M4 after the conformally capping. Further, a stop-etch material (M5) is selectively grown on exposed surfaces of M3 and not on surfaces of M4 after the gap filling. Additionally, the method includes operations for removing M4 from the substrate after selectively growing M5, and for etching the substrate after removing M4 to transfer the pattern into M1. M5 adds etching protection to enable deeper etching into M1.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: January 9, 2024
    Assignee: Lam Research Corporation
    Inventors: Nagraj Shankar, Kapu Sirish Reddy, Jon Henri, Pengyi Zhang, Elham Mohimi, Bhavin Jariwala, Arpan Pravin Mahorowala
  • Patent number: 11864372
    Abstract: A method for reducing bending of word lines in a memory cell includes a) providing a substrate including a plurality of word lines arranged adjacent to one another and above a plurality of transistors; b) depositing a layer of film on the plurality of word lines using a deposition process; c) after depositing the layer of film, measuring word line bending; d) comparing the word line bending to a predetermined range; e) based on the word line bending, adjusting at least one of nucleation delay and grain size of the deposition process; and f) repeating b) to e) one or more times using one or more substrates, respectively, until the word line bending is within the predetermined range.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: January 2, 2024
    Assignee: Lam Research Corporation
    Inventors: Gorun Butail, Shruti Thombare, Ishtak Karim, Patrick Van Cleemput
  • Patent number: 11859282
    Abstract: Various embodiments include an apparatus to supply gases to a tool. In various examples, the apparatus includes a point-of-use (POU) valve manifold that includes a manifold body to couple to a chamber of the tool. The manifold body has multiple gas outlet ports. A purge-gas outlet port of the manifold body is directed substantially toward the outlet ports. For each of multiple gases to be input to the POU-valve manifold, the POU-valve manifold further includes: a first valve coupled to the manifold body and a divert valve coupled to the first valve. The first valve can be coupled to a gas supply and has a separate gas flow path internal to the manifold body and separate from remaining ones of the gas flow paths. The divert valve diverts the gas during a period when the precursor gas is not to be directed into the chamber by the first valve. Other examples are disclosed.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: January 2, 2024
    Assignee: Lam Research Corporation
    Inventors: Damodar Rajaram Shanbhag, Nagraj Shankar
  • Patent number: 11860016
    Abstract: A mass flow controller assembly includes a housing defining a cavity, a plurality of internal passages, a first inlet, a first outlet, a second inlet, and a second outlet. A valve is connected to the housing, has an inlet fluidly coupled to the second outlet of the housing and an outlet fluidly coupled to the second inlet of the housing. The valve is configured to control fluid flow from the second outlet of the housing to the second inlet of the housing. A microelectromechanical (MEMS) Coriolis flow sensor is arranged in the cavity, includes an inlet fluidly coupled by at least one of the plurality of internal passages to the first inlet of the housing and is configured to measure at least one of a mass flow rate and density of fluid flowing through the MEMS Coriolis flow sensor. An outlet of the MEMS Coriolis flow sensor is fluidly coupled by at least one of the plurality of internal passages to the second outlet of the housing.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: January 2, 2024
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Dennis Smith, Peter Reimer, Sudhakar Gopalakrishnan
  • Patent number: 11862435
    Abstract: A system includes an electrode. The electrode includes a showerhead having a first stem portion and a head portion. A plurality of dielectric layers is vertically stacked between the electrode and a first surface of a conducting structure. The plurality of dielectric layers includes M dielectric layers arranged adjacent to the head portion and P dielectric portions arranged around the first stem portion. The plurality of dielectric layers defines a first gap between the electrode and one of the plurality of dielectric layers, a second gap between adjacent ones of the plurality of dielectric layers, and a third gap between a last one of the plurality of dielectric layers and the first surface. A number of the plurality of dielectric layers and sizes of the first gap, the second gap, and the third gap are selected to prevent parasitic plasma between the first surface and the electrode.
    Type: Grant
    Filed: March 31, 2023
    Date of Patent: January 2, 2024
    Assignee: Lam Research Corporation
    Inventors: Douglas Keil, Edward J. Augustyniak, Karl Frederick Leeser, Mohamed Sabri
  • Patent number: 11862473
    Abstract: Removing a stimuli responsive polymer (SRP) from a substrate includes controlled degradation. In certain embodiments of the methods described herein, removing SRPs includes exposure to two reactants that react to form an acid or base that can trigger the degradation of the SRP. The exposure occurs sequentially to provide more precise top down control. In some embodiments, the methods involve diffusing a compound, or a reactant that reacts to form a compound, only to a top portion of the SRP. The top portion is then degraded and removed, leaving film the remaining SRP intact. The exposure and removal cycles are repeated.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: January 2, 2024
    Assignee: Lam Research Corporation
    Inventors: Stephen M. Sirard, Gregory Blachut, Diane Hymes
  • Patent number: 11859300
    Abstract: Methods and electroplating systems for controlling plating electrolyte concentration on an electrochemical plating apparatus for substrates are disclosed. A method involves: (a) providing an electroplating solution to an electroplating system; (b) electroplating the metal onto the substrate while the substrate is held in a cathode chamber of an electroplating cell of electroplating system; (c) supplying the make-up solution to the electroplating system via a make-up solution inlet; and (d) supplying the secondary electroplating solution to the electroplating system via a secondary electroplating solution inlet. The secondary electroplating solution includes some or all components of the electroplating solution. At least one component of the secondary electroplating solution has a concentration that significantly deviates from its target concentration.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: January 2, 2024
    Assignee: Lam Research Corporation
    Inventors: Zhian He, Shantinath Ghongadi, Quan Ma, Hyungjun Hur, Cian Sweeney, Quang Nguyen, Rezaul Karim, Jingbin Feng
  • Patent number: 11851760
    Abstract: A plasma processing system is provided. The system includes a chamber, a controller and a showerhead disposed in the chamber. A first gas manifold is connected to the showerhead for providing a first gas from a first gas source responsive to control from the controller. A shower-pedestal is disposed in the chamber and oriented opposite the showerhead. A second gas manifold is connected to the shower-pedestal for providing a second gas from a second gas source responsive to control from the controller. A substrate support for holding a substrate at a spaced apart relationship from the shower-pedestal is provided. A radio frequency (RF) power supply for providing power to the showerhead to generate a plasma is provided. The plasma is used for depositing a film on a back-side of the substrate, when present in the chamber. The substrate is held by the substrate support in the spaced apart relationship from the shower-pedestal, during backside deposition.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: December 26, 2023
    Assignee: Lam Research Corporation
    Inventors: Fayaz Shaikh, Nick Linebarger, Curtis Bailey
  • Patent number: 11854792
    Abstract: A method for treating high aspect ratio (HAR) structures arranged on a surface of a substrate includes a) spin rinsing the surface of the substrate using a first rinsing liquid; b) spinning off the first rinsing liquid from the surface of the substrate; and c) directing a gas mixture containing hydrogen fluoride onto the surface of the substrate after the first rinsing liquid is dispensed.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: December 26, 2023
    Assignee: LAM RESEARCH AG
    Inventors: Dries Dictus, Ta-Yu Lo
  • Patent number: 11853026
    Abstract: Various embodiments include methods and apparatuses to provide human safety and machine safety and operations. In one example, a distributed interlock system includes at least one master device coupled to a number of slave device. The slave devices receive signals from one or more tools and provide the signals to the master device. The master device evaluates the signals and prevents unsafe conditions prior to one or more command executions, related to the unsafe conditions, being transmitted to one or more of the slave devices. Other methods and systems are disclosed.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: December 26, 2023
    Assignee: Lam Research Corporation
    Inventors: Eric Tu, Dirk Rudolph, Ales Janhar, John Folden Stumpf, Justin Remulla
  • Patent number: 11848177
    Abstract: An electrostatic chuck for a substrate processing system is provided. The electrostatic chuck includes: a top plate configured to electrostatically clamp to a substrate and formed of ceramic; an intermediate layer disposed below the top plate; and a baseplate disposed below the intermediate layer and formed of ceramic. The intermediate layer bonds the top plate to the baseplate.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: December 19, 2023
    Assignee: Lam Research Corporation
    Inventors: Feng Wang, Keith Gaff, Christopher Kimball
  • Patent number: 11848212
    Abstract: Tin oxide films are used as spacers and hardmasks in semiconductor device manufacturing. In one method, tin oxide layer (e.g., spacer footing) needs to be selectively etched in a presence of an exposed silicon-containing layer, such as SiOC, SiON, SiONC, amorphous silicon, SiC, or SiN. In order to reduce damage to the silicon-containing layer the process involves passivating the silicon-containing layer towards a tin oxide etch chemistry, etching the tin oxide, and repeating passivation and etch in an alternating fashion. For example, passivation and etch can be each performed between 2-50 times. In one implementation, passivation is performed by treating the substrate with an oxygen-containing reactant, activated in a plasma, and the tin oxide etching is performed by a chlorine-based chemistry, such as using a mixture of Cl2 and BCl3.
    Type: Grant
    Filed: November 17, 2022
    Date of Patent: December 19, 2023
    Assignee: Lam Research Corporation
    Inventors: Seongjun Heo, Jengyi Yu, Chen-Wei Liang, Alan J. Jensen, Samantha S. H. Tan
  • Patent number: 11848199
    Abstract: A doped or undoped silicon carbide (SiCxOyNz) film can be deposited in one or more features of a substrate for gapfill. After a first thickness of the doped or undoped silicon carbide film is deposited in the one or more features, the doped or undoped silicon carbide film is exposed to a remote hydrogen plasma under conditions that cause a size of an opening near a top surface of each of the one or more features to increase, where the conditions can be controlled by controlling treatment time, treatment frequency, treatment power, and/or remote plasma gas composition. Operations of depositing additional thicknesses of silicon carbide film and performing a remote hydrogen plasma treatment are repeated to at least substantially fill the one or more features. Various time intervals between deposition and plasma treatment may be added to modulate gapfill performance.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: December 19, 2023
    Assignee: Lam Research Corporation
    Inventors: Guangbi Yuan, Ieva Narkeviciute, Bo Gong, Bhadri N. Varadarajan
  • Patent number: 11842888
    Abstract: A method for cleaning surfaces of a substrate processing chamber includes a) supplying a first gas selected from a group consisting of silicon tetrachloride (SiCl4), carbon tetrachloride (CCl4), a hydrocarbon (CxHy where x and y are integers) and molecular chlorine (Cl2), boron trichloride (BCl3), and thionyl chloride (SOCl2); b) striking plasma in the substrate processing chamber to etch the surfaces of the substrate processing chamber; c) extinguishing the plasma and evacuating the substrate processing chamber; d) supplying a second gas including fluorine species; e) striking plasma in the substrate processing chamber to etch the surfaces of the substrate processing chamber; and f) extinguishing the plasma and evacuating the substrate processing chamber.
    Type: Grant
    Filed: December 30, 2022
    Date of Patent: December 12, 2023
    Assignee: Lam Research Corporation
    Inventors: Jengyi Yu, Samantha SiamHwa Tan, Seongjun Heo, Ge Yuan, Siva Krishnan Kanakasabapathy
  • Patent number: D1012041
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: January 23, 2024
    Assignee: LAM RESEARCH CORPORATION
    Inventor: Andrew Borth