Abstract: Embodiments of the invention relate generally to lighting devices and, more particularly, to lighting devices having tubular housings containing light emitting devices on a circuit board, as well as housings for such lighting devices. In one embodiment, the invention provides a lighting device comprising: a circuit board including a light emitting device; and an elongate substantially tubular housing for enclosing the circuit board, the tubular housing including: a substantially circular interior; a support shelf extending across the substantially circular interior to support the circuit board; and a circuit board restraining member restraining the circuit board to the support shelf.
Abstract: A controller is configured for and a corresponding method of adaptive monitoring and control of a lighting system are suited for adaptively establishing lighting parameters on a fixture by fixture basis. The controller includes a communication interface configured to communicate with a multiplicity of light fixtures, a memory for storing software routines and information associated with each of the light fixtures; and a processor coupled to the memory and the communication interface and configured to execute the software routines and selectively communicate with at least one of the multiplicity of light fixtures to adaptively establish lighting parameters for the at least one of the multiplicity of light fixtures. A method of facilitating the monitoring and control of the light fixture includes controlling a lamp circuit to provide one of a multiplicity of light levels; assessing performance parameters of the light fixture; and communicating with a central server.
Type:
Grant
Filed:
March 13, 2013
Date of Patent:
September 22, 2015
Assignee:
LED Roadway Lighting Ltd.
Inventors:
Donald A. Cleland, Laurence E. Kubek, Carol A. Wong, Colleen D. McCarthy, Gordon A. Duval
Abstract: A tunable color LED module comprises at least two sub-modules, each comprising an LED, a wavelength converting element (WCE) and a reflector cup. The total light emitted by the module comprises light generated from each LED and WCE and the module is configured to emit a total light having a predefined color chromaticity when activation properties of the LEDs are managed appropriately. The total light may have a broad white emission spectrum. The module combines the benefits of a low cost with uniform chromaticity properties in the far field, and offers long and controlled lifetime at the same time as flexibility and intelligence of tunable color chromaticity, Color Rendering Index (CRI) and intensity, either at manufacture or in an end user lighting application. A controlled LED module system comprises a control system for the managing activation properties of the LEDs in the sub-modules. Also described is a method of manufacture.
Type:
Grant
Filed:
October 10, 2013
Date of Patent:
September 22, 2015
Assignee:
PhotonStar LED Limited
Inventors:
James Stuart McKenzie, Majd Zoorob, Thomas David Matthew Lee
Abstract: The present invention provides a color-mixing light-emitting diode module. According to the present invention, a first light-emitting chip and two second light-emitting chips are disposed on a holder. The first light-emitting chip emits red light and the plurality of second light-emitting chips emit white light. The red light and the white light are mixed, giving mixed light with high color rendering and brightness. Objects illuminated by the mixed light will exhibit colors closest to their original colors as perceived by eyes. Furthermore, by arranging the first and second light-emitting chips in matrix, the color rendering of the light-emitting diode module can be adjusted and improved.
Abstract: A durable LED light engine includes a printed circuit board including LEDs mounted thereon positioned between a substantially U-shaped top enclosure and a bottom enclosure. Once assembled together using alignment holes and projections, the combination of the substantially U-shaped top enclosure, the printed circuit board and the bottom enclosure are held together with a molding material.
Abstract: An LED lamp for outdoor and large space lighting, particularly for streets, warehouses car parks and the like, is adapted for fitting into legacy light fittings designed for sodium bulbs and the like. The LED lamp includes light emitting diodes arranged over a surface of the lamp, is rotatably connected through a rotatable electrical connection to a screw-in adaptor for insertion into a legacy screw-in socket, such that the screw in adaptor is rotatable independently of the lamp, so that the legacy screw in socket can be used even though the light fitting is too small to allow rotation of the LED lamp. Additional variants provide for cooling airflow through the light fitting, for temperature control of the LEDs, and for failure protection, to ensure a longest possible lamp lifetime.
Type:
Grant
Filed:
December 3, 2009
Date of Patent:
September 8, 2015
Assignee:
Led Net Ltd.
Inventors:
Ephraim Vadai, Amit Shefi, Tzvika Herbst
Abstract: An illumination source for a camera includes one or more LEDs, and an electrical circuit that selectively applies power from the DC voltage source to the LEDs, wherein the illumination source is suitable for handheld portable operation. In some embodiments, the electrical circuit further includes a control circuit for driving the LEDs with electrical pulses at a frequency high enough that light produced has an appearance to a human user of being continuous rather than pulsed, the control circuit changing a pulse characteristic to adjust a proportion of light output having the first characteristic color spectrum output to that having the second characteristic color spectrum output. Some embodiments provide an illumination source including a housing including one or more LEDs and a control circuit that selectively applies power from a source of electric power to the LEDs, thus controlling a light output color spectrum of the LEDs.
Type:
Grant
Filed:
September 8, 2014
Date of Patent:
August 25, 2015
Assignee:
LED Tech Development, LLC
Inventors:
Gary A. Lebens, Charles T. Bourn, Charles A. Lemaire
Abstract: A light emitting module according to an exemplary embodiment of the present invention includes a printed circuit board (PCB) and first through m-th lighting blocks (‘m’ is an integer greater than one). The PCB has wiring patterns electrically connecting optical semiconductor devices. The first through the m-th lighting blocks are disposed on the PCB and configured to generate light. Each of the first through the m-th lighting blocks includes first through n-th lighting groups (each block includes at least one group), each of which includes optical semiconductor devices disposed on the PCB, and an electric currents configured to flow through each lighting group is substantially the same.
Abstract: An improved light-emitting diode (LED) light fixture can include a circuit board, multiple LED clusters, and a master power controller. The LED clusters can be arranged on the circuit board and can include at least seven LEDs electrically connected in series and a regulator circuit. The LEDs of an LED cluster can be arranged such that one LED is located at a central point of the LED cluster and the remaining LEDs are arranged in a circular geometry around the center LED. The master power controller can be coupled to the circuit board and can be configured to control power provided to the LED clusters.
Abstract: Embodiments of the invention provide an optical semiconductor illuminating apparatus, which includes a heat dissipating base; a light emitting module comprising at least one semiconductor light emitting device and mounted on a lower side of the heat dissipating base; and a plurality of heat dissipating fins each having opposite edges protruding from opposite sides of the heat dissipating base and being mounted on an upper surface of the heat dissipating base.
Type:
Grant
Filed:
June 19, 2013
Date of Patent:
August 25, 2015
Assignee:
Posco LED Company Ltd.
Inventors:
Seung Ki Kim, Dong Soo Kim, Tae Hoon Song, Dong Hee Kim, Su Woon Lee, Il Park
Abstract: An extended length flexible LED light strip system for extending the length of a flexible LED light strip. The extended length flexible LED light strip system generally includes a protective covering having a passage, a light strip extending within the passage of the protective covering, a first power bus and a second power bus within the protective covering, and a plurality of connectors electrically connecting the light strip to the power buses at selected lengths. A power coupler is provided that includes a pair of prongs that extend into the protective covering and electrically contact the power buses to provide DC power to the power buses.
Abstract: A lighting apparatus includes a housing, a light emitting module disposed on an open region at one side of the housing, and a heat sink unit placed within the housing to absorb and discharge heat from the light emitting module. The light emitting module includes a heat sink base on which a semiconductor optical device is mounted. The heat sink unit includes at least one main heat pipe having one side adjoining the heat sink base and a heat sink block adjoining the other side of the main heat pipe to cooperate with the main heat pipe.
Type:
Grant
Filed:
May 24, 2012
Date of Patent:
August 18, 2015
Assignee:
Posco LED Company Ltd.
Inventors:
Su Woon Lee, Seung Ki Kim, Jung Hwa Kim, Seon Min Park, Hwi Seok Yang, Yu Jin Heo
Abstract: Disclosed are a nitride semiconductor light-emitting element having a superior current spreading effect as a result of using a current spreading part containing current spreading impurities, and a method for manufacturing same. The nitride semiconductor light-emitting element according to the present invention comprises: an n-type nitride layer; a current spreading part, which is formed from nitride comprising current spreading impurities, and which is disposed on the n-type nitride layer; an activation layer disposed on the current spreading part; and a p-type nitride layer disposed on the activation layer, wherein the current spreading impurities comprise carbon (C).
Abstract: A multi-color light emitting diode device includes a plurality of light sources and a control module. The light sources are a Ultraviolet A light source, a Ultraviolet B light source, and a Ultraviolet C light source, a red light source, a green light source, and a blue light source, an infrared light source, and a YVA light source. The control circuit is configured with a plurality of control channels. Each of the control channels controls he respective light source to emit a light to generate a desired light combination.
Abstract: A light-guide apparatus comprising a light-guide plate for guiding light rays and a plurality of light extraction features is described. The light extraction features comprise a transparent material applied to the light-guide plate so as to form an uneven surface. The transparent material may comprise a textured ink applied to the surface of the light-guide plate via a printing process. The incorporation of an uneven surface provides micro-lens like elements on the surface of the extraction feature which have a higher aspect ratio and so lend themselves to the refraction of the light out of the light-guide plate. In this way a device is produced wherein the size, height, location and surface profile of the extraction features can be carefully controlled. As a result the described light-guide apparatus provides for a highly efficient and relatively uniform light output.