Abstract: An adjusting unit disposed between a housing including at least one or more semiconductor optical devices and a case accommodating an SMPS, so as to adjust the height of the casing. At least one or more light emitting modules are mounted on the bottom surface of the housing, and a position determining unit is disposed in the housing in correspondence to an edge of the light emitting module. A heat sink unit is provided in correspondence to the top surface of the housing. Therefore, transport costs can be significantly reduced by securing the loading space. The semiconductor optical devices serving as a light source can be appropriately arranged, and the semiconductor optical devices can be mounted at accurate positions. Furthermore, products can be rapidly mass-produced due to a simplified manufacturing process thereof.
Type:
Grant
Filed:
August 28, 2012
Date of Patent:
April 21, 2015
Assignee:
Posco LED Company Ltd.
Inventors:
Ji Wan Kim, Min Uk Yoo, Min Su Kim, Jung Hwa Kim
Abstract: A method of making a light emitting diode (LED) lamp is disclosed. Included are steps of: providing a metal heat sink having a cylindrical portion formed with flat planar surfaces extending longitudinally around the outer surface; providing flat LED boards that are attached to the flat planar surfaces; providing a circular LED board mounted to the top end of the cylindrical portion; providing a turret connector board with electrical connection ports to electrically join the LED boards; providing a driver circuit board and electrically connecting it to the turret connector board; connecting the flat LED boards to the driver circuit board; securing the circular LED board to the top open-end; and securing the flat LED boards to the flat planar surfaces. Optional steps include: providing a mounting plate of heat conducting metal; applying thermal compound; providing and installing a transparent cover; providing and attaching a mount to the incandescent lamp.
Abstract: Disclosed are a nitride semiconductor light-emitting element and a method for manufacturing the same. The nitride semiconductor light-emitting element according to the present invention comprises: a current blocking part disposed between a substrate and an n-type nitride layer; an activation layer disposed on the top surface of the n-type nitride layer; and a p-type nitride layer disposed on the top surface of the activation layer, wherein the current blocking part is an AlxGa(1-x)N layer, and the Al content x times layer thickness (?m) is in the range of 0.01-0.06. Accordingly, the nitride semiconductor light-emitting element can increase the luminous efficiency by having a current blocking part which prevents current leakage from occurring.
Abstract: A method of fabricating a light emitting diode device comprises depositing conductive material to cover a portion of surface of a conductive and reflective layer to form a first contact pad, and surfaces between adjacent first trenches to form a second contact pad; and depositing a first passivation layer over uncovered portion of surface of the conductive and reflective layer to form a first planar passivation contact surface between the first contact pad and the second trench and depositing bonding material to cover a portion of surface of the first contact pad, a portion of the second contact pad and a portion of the first planar passivation contact to form a first light emitting diode bonding pad on the first contact pad, a second light emitting diode bonding pad on the second contact pad, and a third light emitting diode bonding pad on the first planar passivation contact.
Abstract: A novel submount for the efficient dissipation of heat away from a semiconductor light emitting device is described, which also maintains efficient electrical conductivity to the n and p contacts of the device by separating the thermal and electrical conductivity paths. The submount comprises at least the following constituent layers: a substrate (400) with thermally conductive properties; a deposited layer (402) having electrically insulating and thermally conducting properties disposed on at least a region of the substrate having a thickness of between 50 nm and 50 microns; a patterned electrically conductive circuit layer (404) disposed on at least a region of the deposited layer; and, a passivation layer at least partially overcoating a top surface of the submount. Also described is a light emitting module employing the substrate and a method of manufacture of the submount.
Abstract: The present invention discloses a ceiling, in particular to a ceiling board with modularized composite LED lamps. The ceiling comprises a light bar (2), a ceiling board (1a, 1b). The ceiling is characterized in that a plurality of LED lamps are fixedly embedded in a light bar (2); the bar (2) is mounted on the side edges of two adjoining ceiling boards (1) fitted and held firmly by the standard ceiling grids.
Abstract: The invention described herein is a very thin flat panel LED luminaire, including a flat baseboard, a flat reflection panel, a flat acrylic panel, a flat diffusion panel, LED bar, and aluminum encasement frame which combines with the baseboard to form the chassis for the luminaire. The LED bar is placed along either or both sides of the stack. The acrylic panel is printed with a mesh-like mask pattern of dots in a pattern in which the density of the pattern is decreases the farther away from the LED bar the pattern is, differentially coupling the light from the point source LED bar from the reflection panel into the flat acrylic panel so that illumination across the luminaire is substantially uniform.
Abstract: A chip-on-board LED structure having multiple of LED dies, includes a flexible heat spreading pad for spreading heat and having a planar area; a top flexible foil on the flexible heat spreading pad; a dielectric layer on the first flexible foil; a flexible metal film on the dielectric layer; and an LED die array mounted on and covering a first area of the flexible metal film, wherein the planar area of the flexible heat spreading pad is at least four times larger than the first area of the flexible metal film.
Abstract: An LED automobile headlamp assembly including: a transparent front window; a back side housing attached to the transparent front window; a flexible heat spreader pad attached to the back housing and positioned between the back side housing and the front transparent window; an LED mounted on the heat spreader pad; and a supporting mechanism attached to the flexible heat spreader pad for tilting the LED.
Abstract: A light emitting device having a plurality of light extracting elements defined on an upper surface of a semiconductor layer of the device, wherein the light extracting elements are adapted to couple light out of the device and to modify the far field emission profile of the device. Each element comprises an elongate region having a length at least twice its width and also greater than the effective dominant wavelength of light generated in the device. The elongate region extends orthogonal to the upper surface but not into the light emitting region of the device and may be oriented at an angle of less than 45° relative to one of a pair of basis axis defining a plane parallel to the semiconductor layer. Each elongate region is spatially separated from neighboring elongate regions such that it perturbs light generated in the light emitting region independently of the neighboring regions.
Abstract: A optical semiconductor lighting apparatus includes: a board; a drive IC which is disposed in a central portion of the board; a plurality of semiconductor optical devices which is disposed adjacent to and around the drive IC in the board in a grid shape in one or more rows and columns; a non-insulating heat sink in which the board is disposed; an insulating housing which accommodates the heat sink and protects the drive IC and the plurality of semiconductor optical devices from withstand voltages; and a first optical member which faces the plurality of semiconductor optical devices, transmits or reflects light irradiated from the semiconductor optical devices, and forms a vertical vent hole corresponding to the drive IC; and a second optical member which is connected to an upper side of the housing and forms light distribution by refracting light transmitted or reflected from the first optical member.
Abstract: An improvement in a light therapy device including multiple light-emitting diodes (LEDs) positioned in a handheld portable device is disclosed. Where the housing and the LEDs are configured to have direct contact with the skin or tissue of the user without any intermediary materials, and light the surface and underlying layers of tissue for photodynamic stimulation of the cells. Two iterations of the device utilize light known to have a bactericidal effect in the case or acne or Rosacea. The devices are fabricated from an injection molded plastic housing. The housing contains an arrangement of 36-72 LEDs on a circuit board in an arrangement to provide even lighting over the skin or tissue surface.
Abstract: An optical semiconductor illuminating apparatus capable of being simply installed and built, easily detecting a fault generation point, being simply repaired and replaced, and being compactly implemented. A bracket assembly having a power supply embedded therein is mounted at an upper side of a heat sink including a fixed unit, the power supply is seated on the heat sink including the fixed unit, a plurality of heat radiation fins protrude from an inner surface of the heat sink, and an upper surface of the power supply is disposed at a position higher than or equal to that of an edge of an upper end portion of the heat sink.
Abstract: A first heat sinking path formed in a forming direction of a heat sink unit disposed radially in a housing where a light emitting module is mounted. A second heat sinking path is formed along an edge of the light emitting module. By providing a light engine concept in which a light emitting module, an optical member, and a heat sink unit are included and a bottom surface is gradually widened from one side to the other side, an optical semiconductor lighting apparatus can reduce a total weight of a product, can further improve heat dissipation efficiency by inducing natural convection, is simple in the product assembly and installation, and is easy in maintenance, and can provide products with high reliability by increasing the arrangement efficiency of semiconductor optical devices per unit area.
Type:
Grant
Filed:
October 17, 2013
Date of Patent:
December 23, 2014
Assignee:
Posco LED Company Ltd.
Inventors:
Dong Soo Kim, Seok Jin Kang, Kyoo Seok Kim, Yoon Gil Jang, Dong Hee Kim, Seong Bok Yoon, Jung Hwa Kim