Patents Assigned to MCNC
  • Patent number: 6057520
    Abstract: A MEMS (Micro Electro Mechanical System) electrostatically operated device is provided that can switch high voltages while providing improved arcing tolerance. The MEMS device comprises a microelectronic substrate, a substrate electrode, first and second contact sets, an insulator, and a moveable composite. The moveable composite overlies the substrate and substrate electrode. In cross section, the moveable composite comprises an electrode layer and a biasing layer. In length, the moveable composite comprises a fixed portion attached to the underlying substrate, a medial portion, and a distal portion moveable with respect to the substrate electrode. Each contact set has at least one composite contact attached to the moveable composite, and preferably at least one substrate contact attached to the substrate. One of the contact sets is closer to the composite distal portion. The distal and/or medial portions of the moveable composite are biased in position when no electrostatic force is applied.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: May 2, 2000
    Assignee: MCNC
    Inventor: Scott Halden Goodwin-Johansson
  • Patent number: 6025767
    Abstract: A micro-relay module includes a substrate and a lid in spaced apart relation, and a solder ring which bonds the lid to the substrate to define a chamber therebetween. A micromachined relay is integrally formed on the substrate or on the lid within the chamber. A gas is contained in the chamber at a gas pressure which is above atmospheric pressure. Input/output pads are included outside the chamber and electrically connected to the micromachined relay. Large numbers of encapsulated modules may be fabricated on a single substrate by integrally forming an array of relays on a face of a first substrate. A second substrate is placed adjacent the face with a corresponding array of solder rings therebetween, such that a respective solder ring surrounds a respective relay. The solder rings are reflowed in a gas atmosphere which is above atmospheric pressure to thereby form an array of high pressure gas encapsulating chambers.
    Type: Grant
    Filed: August 5, 1996
    Date of Patent: February 15, 2000
    Assignee: MCNC
    Inventors: Mark D. Kellam, Michele J. Berry
  • Patent number: 6023121
    Abstract: A MEMS actuator is provided that produces significant forces and displacements while consuming a reasonable amount of power. The MEMS actuator includes a microelectronic substrate, spaced apart supports on the substrate and a metallic arched beam extending between the spaced apart supports. The MEMS actuator also includes a heater for heating the arched beam to cause further arching of the beam. In order to effectively transfer heat from the heater to the metallic arched beam, the metallic arched beam extends over and is spaced, albeit slightly, from the heater. As such, the MEMS actuator effectively converts the heat generated by the heater into mechanical motion of the metallic arched beam. A family of other MEMS devices, such as relays, switching arrays and valves, are also provided that include one or more MEMS actuators in order to take advantage of its efficient operating characteristics. In addition, a method of fabricating a MEMS actuator is further provided.
    Type: Grant
    Filed: January 19, 1999
    Date of Patent: February 8, 2000
    Assignee: MCNC
    Inventors: Vijayakumar R. Dhuler, Robert L. Wood, Ramaswamy Mahadevan
  • Patent number: 6013381
    Abstract: A method for pretreating a solder surface for fluxless soldering is disclosed. The method uses a noble fluorine gas to remove surface oxides from solder surfaces, without the use of external stimulation. A noble fluorine gas is suffused across the solder surface to reduce or eliminate or chemically convert the surface oxides. The process can take place at atmospheric pressure and room temperature. A simple belt driven transport may be used to move the parts past a nozzle which emits the vapor in a system similar to a conventional solder reflow machine.
    Type: Grant
    Filed: September 15, 1997
    Date of Patent: January 11, 2000
    Assignee: MCNC
    Inventors: Stephen M. Bobbio, Glenn A. Rinne
  • Patent number: 5992729
    Abstract: A first component is soldered to a second component by placing the first component on the second component with solder therebetween, then ultrasonically vibrating at least one of the first and second components to thereby tack the solder to at least one of the first and second components, and by reflowing the solder. Ultrasonic vibration of at least one of the first and second components to thereby tack the solder is preferably performed for less than one second. A component placer places the first component on the second component with solder therebetween. An ultrasonic vibrator ultrasonically vibrates at least one of the placed first and second components, to thereby tack the solder to at least one of the placed first and second components. A solder reflower reflows the tacked solder to thereby solder the first component to the second component.
    Type: Grant
    Filed: October 2, 1996
    Date of Patent: November 30, 1999
    Assignee: MCNC
    Inventors: Nicholas G. Koopman, Sundeep Nangalia
  • Patent number: 5994816
    Abstract: A MEMS actuator is provided that produces significant forces and displacements while consuming a reasonable amount of power. The MEMS actuator includes a microelectronic substrate, spaced apart supports on the substrate and a metallic arched beam extending between the spaced apart supports. The MEMS actuator also includes a heater for heating the arched beam to cause further arching of the beam. In order to effectively transfer heat from the heater to the metallic arched beam, the metallic arched beam extends over and is spaced, albeit slightly, from the heater. As such, the MEMS actuator effectively converts the heat generated by the heater into mechanical motion of the metallic arched beam. A family of other MEMS devices, such as relays, switching arrays and valves, are also provided that include one or more MEMS actuators in order to take advantage of its efficient operating characteristics. In addition, a method of fabricating a MEMS actuator is further provided.
    Type: Grant
    Filed: September 24, 1997
    Date of Patent: November 30, 1999
    Assignee: MCNC
    Inventors: Vijayakumar R. Dhuler, Robert L. Wood, Ramaswamy Mahadevan
  • Patent number: 5990472
    Abstract: A radiation detector includes a microelectronic frustum structure that defines an inner cavity and is mounted to a base structure such as a microelectronic substrate. In particular, at least two microelectronic sections or substrates are attached to one another to form the frustum structure. A radiation sensor can be fabricated on one or more of the sections. In addition, a radiation sensor can be mounted to the base so as to be concentrically aligned with the longitudinal axis of the cavity of the frustum structure. The substrates forming the frustum structure are preferably attached to one another using arched solder interconnects. The frustum structure may also be attached to the base using arched solder interconnects.
    Type: Grant
    Filed: September 29, 1997
    Date of Patent: November 23, 1999
    Assignee: MCNC
    Inventor: Glenn A. Rinne
  • Patent number: 5963793
    Abstract: Microelectronic packages are formed wherein solder bumps on one or more substrates are expanded, to thereby extend and contact the second substrate and form a solder connection. The solder bumps are preferably expanded by reflowing additional solder into the plurality of solder bumps. The additional solder may be reflowed from an elongated, narrow solder-containing region adjacent the solder bump, into the solder bump. After reflow, the solder bump which extends across a pair of adjacent substrates forms an arched solder column or partial ring of solder between the two substrates.
    Type: Grant
    Filed: June 12, 1998
    Date of Patent: October 5, 1999
    Assignee: MCNC
    Inventors: Glenn A. Rinne, Philip A. Deane
  • Patent number: 5962949
    Abstract: A microelectromechanical (MEMS) positioning apparatus is provided that can precisely microposition an object in each of the X, Y and Z directions. The MEMS positioning apparatus includes a reference surface, a support disposed in a fixed position to the reference surface, and a stage defining an XY plane that is suspended adjacent to the support and over at least a portion of the reference surface. The MEMS positioning apparatus also includes at least one and, more typically, several actuators for precisely positioning the stage and, in turn, objects carried by the stage. For example, the MEMS positioning apparatus can include first and second MEMS actuators for moving the stage in the XY plane upon actuation. In addition, the MEMS positioning apparatus can include a Z actuator, such as a thermal bimorph structure, for moving the stage in the Z direction. As such, the MEMS positioning apparatus can precisely position the stage as well as any objects carried by the stage in each of the X, Y and Z directions.
    Type: Grant
    Filed: November 6, 1997
    Date of Patent: October 5, 1999
    Assignee: MCNC
    Inventors: Vijayakumar R. Dhuler, Robert L. Wood
  • Patent number: 5955817
    Abstract: A MEMS actuator is provided that produces significant forces and displacements while consuming a reasonable amount of power. The MEMS actuator includes a microelectronic substrate, spaced apart supports on the substrate and a metallic arched beam extending between the spaced apart supports. The MEMS actuator also includes a heater for heating the arched beam to cause further arching of the beam. In order to effectively transfer heat from the heater to the metallic arched beam, the metallic arched beam extends over and is spaced, albeit slightly, from the heater. As such, the MEMS actuator effectively converts the heat generated by the heater into mechanical motion of the metallic arched beam. A family of other MEMS devices, such as relays, switching arrays and valves, are also provided that include one or more MEMS actuators in order to take advantage of its efficient operating characteristics. In addition, a method of fabricating a MEMS actuator is further provided.
    Type: Grant
    Filed: January 19, 1999
    Date of Patent: September 21, 1999
    Assignee: MCNC
    Inventors: Vijayakumar R. Dhuler, Robert L. Wood, Ramaswamy Mahadevan
  • Patent number: 5923796
    Abstract: A multichip module having high density optical and electrical interconnections between integrated circuit chips includes a substrate overlaying an array of integrated circuit chips. An optical transmitter generates a first optical beam through the substrate and an optical detector receives a second optical beam through the substrate. A hologram is positioned in the path of at least one of the first and second optical beams. An array of electrical contact pads is located on the substrate corresponding to the array of electrical contact pads on the respective integrated circuit chips. A pattern of electrical interconnection lines is located on the substrate for electrically interconnecting the integrated circuit chips. A solder bump between electrical contact pads on the substrate and on the integrated circuit chips establish electrical connections between the substrate and the integrated circuit chips, and also facilitate alignment of the integrated circuit chips with respect to the substrate.
    Type: Grant
    Filed: April 17, 1997
    Date of Patent: July 13, 1999
    Assignees: MCNC, The University of North Carolina
    Inventors: Michael R. Feldman, Iwona Turlik, Gretchen M. Adema
  • Patent number: 5914801
    Abstract: An electromechanical device includes a first frame having a first aperture therein, a second frame suspended in the first frame wherein the second frame has a second aperture therein, and a plate suspended in the second aperture. A first pair of beams support the second frame along a first axis relative to the first frame so that the second frame rotates about the first axis. A second pair of beams supports the plate along a second axis relative to the second frame so that the plate rotates about the second axis relative to the frame. The first and second axes preferably intersect at a 90.degree. angle. A first actuator provides mechanical force for rotating the second frame relative to the first frame about the first axis. A second actuator provides mechanical force for rotating the plate relative to the second frame about the second axis. Accordingly, the plate can be independently rotated relative to the first axis and the second axis. Related methods are also disclosed.
    Type: Grant
    Filed: September 27, 1996
    Date of Patent: June 22, 1999
    Assignee: MCNC
    Inventors: Vijayakumar R. Dhuler, David A. Koester, Mark D. Walters, Karen W. Markus
  • Patent number: 5909078
    Abstract: Microelectromechanical actuators include at least one arched beam which extends between spaced apart supports on a microelectronic substrate. The arched beams are arched in a predetermined direction and expand upon application of heat thereto. A coupler mechanically couples the plurality of arched beams between the spaced apart supports. Heat is applied to at least one of the arched beams to cause further arching as a result of thermal expansion thereof, and thereby cause displacement of the coupler along the predetermined direction. Internal heating of the arched beams by passing current through the arched beams may be used. External heating sources may also be used. The coupler may be attached to a capacitor plate to provide capacitive sensors such as flow sensors. The coupler may also be attached to a valve plate to provide microvalves. Compensating arched beams may be used to provide ambient temperature insensitivity.
    Type: Grant
    Filed: December 16, 1996
    Date of Patent: June 1, 1999
    Assignee: MCNC
    Inventors: Robert L. Wood, Vijayakumar R. Dhuler
  • Patent number: 5902686
    Abstract: Method for forming a solder bump on a substrate include the steps of forming an under bump metallurgy layer on a substrate, forming a solder bump on the under bump metallurgy layer, and forming an intermetallic portion of the under bump metallurgy layer adjacent the solder bump. In particular, the solder bump has a predetermined shape and this predetermined shape is retained while forming the intermetallic portion of the under bump metallurgy layer. This predetermined shape preferably has a flat surface opposite the substrate thus providing a uniform thickness of solder during the formation of the intermetallic portion. Related structures are also disclosed.
    Type: Grant
    Filed: November 21, 1996
    Date of Patent: May 11, 1999
    Assignee: MCNC
    Inventor: Joseph Daniel Mis
  • Patent number: 5892179
    Abstract: A solder bump structure on a microelectronic substrate including an electrical contact having an exposed portion. This solder bump structure includes an under bump metallurgy structure on the microelectronic substrate, and a solder structure on the under bump metallurgy structure opposite the microelectronic substrate. The metallurgy structure includes an elongate portion having a first end which electronically contacts the exposed portion of the electrical contact and an enlarged width portion connected to a second end of the elongate portion. The solder structure includes an elongate portion on the metallurgy structure and an enlarged width portion on the enlarged width portion of the metallurgy structure. Accordingly, the enlarged width portion of the solder structure can be formed on a portion of the microelectronic substrate other than the contact pad and still be electronically connected to the pad.
    Type: Grant
    Filed: November 24, 1997
    Date of Patent: April 6, 1999
    Assignee: MCNC
    Inventors: Glenn A. Rinne, Joseph Daniel Mis
  • Patent number: 5793116
    Abstract: Microelectronic packages are formed wherein solder bumps on one or more substrates are expanded, to thereby extend and contact the second substrate and form a solder connection. The solder bumps are preferably expanded by reflowing additional solder into the plurality of solder bumps. The additional solder may be reflowed from an elongated, narrow solder-containing region adjacent the solder bump, into the solder bump. After reflow, the solder bump which extends across a pair of adjacent substrates forms an arched solder column or partial ring of solder between the two substrates.
    Type: Grant
    Filed: May 29, 1996
    Date of Patent: August 11, 1998
    Assignee: MCNC
    Inventors: Glenn A. Rinne, Philip A. Deane
  • Patent number: 5767010
    Abstract: A method for fabricating solder bumps on a microelectronic device having contact pads includes the steps of depositing a titanium barrier layer on the device, forming an under bump metallurgy layer on the titanium barrier layer, and forming one or more solder bumps on the under bump metallurgy layer. The solder bump or bumps define exposed portions of the under bump metallurgy layer which are removed, and then the exposed portion of the titanium barrier layer is removed. The titanium barrier layer protects the underlying microelectronic device from the etchants used to remove the under bump metallurgy layer. The titanium layer also prevents the under bump metallurgy layer from forming a residue on the underlying microelectronic device. Accordingly, the titanium barrier layer allows the under bump metallurgy layer to be quickly removed without leaving residual matter thereby reducing the possibility of electrical shorts between solder bumps.
    Type: Grant
    Filed: November 5, 1996
    Date of Patent: June 16, 1998
    Assignee: MCNC
    Inventors: Joseph Daniel Mis, Gretchen Maerker Adema, Mark D. Kellam, W. Boyd Rogers
  • Patent number: 5740258
    Abstract: A noise suppressor includes an input transducer and an output transducer adapted to be located in an ear canal. A housing is provided to support the transducers in the ear canal, and the housing provides an acoustically unobstructed passage from the entrance of the ear canal to the ear drum. The input transducer generates electrical signals in response to sound pressure waves entering the ear canal, and a portion of the electrical signal is processed to generate an inverse noise signal which is applied to the output transducer. Accordingly, the output transducer produces inverse noise pressure waves in order to reduce an undesired noise portion of the sound pressure waves reaching the ear drum. The sound pressure waves also reach the ear drum without significant alteration.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: April 14, 1998
    Assignee: MCNC
    Inventor: Scott H. Goodwin-Johansson
  • Patent number: 5647785
    Abstract: A vertical microelectronic field emitter is formed by first forming tips on the face of a substrate and then forming trenches in the substrate around the tips to form columns in the substrate, with the tips lying on top of the columns. The trenches are filled with a dielectric and a conductor layer is formed on the dielectric. Alternatively, trenches may be formed in the face of the substrate with the trenches defining columns in the substrate. Then, tips are formed on top of the columns. The trenches are filled with dielectric and the conductor layer is formed on the dielectric to form the extraction electrodes.
    Type: Grant
    Filed: September 13, 1995
    Date of Patent: July 15, 1997
    Assignee: MCNC
    Inventors: Gary Wayne Jones, Ching-Tzong Sune
  • Patent number: 5638469
    Abstract: A multichip module having high density optical and electrical interconnections between integrated circuit chips includes a substrate overlaying an array of integrated circuit chips. An optical transmitter generates a first optical beam through the substrate and an optical detector receives a second optical beam through the substrate. A hologram is positioned in the path of at least one of the first and second optical beams. An array of electrical contact pads is located on the substrate corresponding to the array of electrical contact pads on the respective integrated circuit chips. A pattern of electrical interconnection lines is located on the substrate for electrically interconnecting the integrated circuit chips. A solder bump between electrical contact pads on the substrate and on the integrated circuit chips establish electrical connections between the substrate and the integrated circuit chips, and also facilitate alignment of the integrated circuit chips with respect to the substrate.
    Type: Grant
    Filed: August 16, 1993
    Date of Patent: June 10, 1997
    Assignees: MCNC, University of North Carolina
    Inventors: Michael R. Feldman, Iwona Turlik, Gretchen M. Adema