Patents Assigned to Mitsubishi Kinzoku Kabushiki Kaisha
  • Patent number: 4826578
    Abstract: A heat-transfer material includes a tubular body made of a metal. The body includes on an inner surface thereof a porous electroplated layer having re-entrant cavities. A heat transfer material is produced by: preparing a body of a metal serving as a cathode and forming a hydrophobic film on a surface of the body; subsequently keeping the surface of the body and an anode in contact with a plating aqueous solution; and subsequently applying a direct electrical potential between the anode and the cathode to cause plating current to flow through the plating solution to lay deposits of plating metal on the surface of the body and laying a number of particulate bubbles on the hydrophobic film on the surface of the body so that the bubbles are enveloped by the metal deposits to form on the surface of the body a porous plated layer having re-entrant cavities.
    Type: Grant
    Filed: July 20, 1988
    Date of Patent: May 2, 1989
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Yasuo Masuda, Tsutomu Takahashi, Yoshio Takizawa, Naokazu Yoshiki
  • Patent number: 4824530
    Abstract: A heat-transfer material is produced by: preparing a body of metal serving as a cathode; subsequently keeping a surface of the body and an anode in contact with a plating aqueous solution; and applying a direct electrical potential between the anode and the cathode to cause a plating current to flow through the plating solution to produce slime from the anode and to lay deposits of plating metal on the surface of the body and moving the slime to the surface of the body to lay deposits of the slime on the surface of the body, so that the deposits of plating metal and the deposits of the slime jointly form on the surface of the body a porous layer which has minuscule projections of electrodeposits densely formed on one surface of the layer directed away from the body.
    Type: Grant
    Filed: July 21, 1988
    Date of Patent: April 25, 1989
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Yasuo Masuda, Tsutomu Takahashi, Yoshio Takizawa, Naokazu Yoshiki
  • Patent number: 4817410
    Abstract: A roll for a mill includes a roll shaft having a tapered portion disposed intermediate opposite ends thereof. The tapered portion has an outer peripheral surface tapering axially of the roll shaft. A ring of a wear-resistant material is disposed around the tapered portion of the roll shaft. A tubular sleeve having an inner peripheral surface tapering axially thereof is press-fitted between the tapered portion of the roll shaft and the ring to retain the ring in place on the roll shaft for rotation therewith. The sleeve includes an inner groove formed in the inner peripheral surface thereof and a passageway formed therethrough. The passageway is communicated with the inner groove so that pressurized oil is supplied through the passageway into the inner groove.
    Type: Grant
    Filed: June 4, 1987
    Date of Patent: April 4, 1989
    Assignees: Mitsubishi Kinzoku Kabushiki Kaisha, Nippon Steel Corporation
    Inventors: Takashi Yatsuzuka, Tetsuya Ohba, Kouji Tanabe, Tatsuo Kojima, Tatsunobu Kobayashi, Kouki Katou
  • Patent number: 4812370
    Abstract: A surface coated tungsten carbide-base sintered hard alloy material for inserts of cutting tools having excellent wear resistance and toughness comprising(1) a substrate having an internal portion consisting essentially of 5-30 percent by weight of one composite metal carbo-nitride, as a compound forming a hard dispersion phase, selected from the group consisting of (Ti, W)CN, (Ti, Nb, W)CN, (Ti, Ta, W)CN, and (Ti, Nb, Ta, W)CN; 4-10 percent Co as a component forming a binder phase, and the balance of WC as a component forming the hard disperse phase and inevitable impurities; the substrate having a surface portion formed with a Co-enriched layer being substantially free of the composite metal carbo-nitride; and(2) a hard surface layer coated over the surface of the substrate, comprising an innermost layer consisting essentially of TiC, the innermost layer containing one of a W component and W and Co components diffused from the substrate; a diffusion preventing layer formed by one of a single layer of one co
    Type: Grant
    Filed: September 25, 1987
    Date of Patent: March 14, 1989
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Yoshikazu Okada, Jun Sugawara, Sumiyoshi Takizawa
  • Patent number: 4808044
    Abstract: An insert cutter includes a cutter body of a generally circular cross-section having an axis of rotation therethrough. The cutter also includes a plurality of cutter inserts releasably mounted on a periphery of the cutter body in circumferentially spaced relation to one another. Each of the cutter inserts has a main cutting edge indexed in its peripheral cutting position. The cutter inserts are disposed so that the indexed main cutting edge of at least one of the cutter inserts is provided with an axial rake angle different from axial rake angles of the indexed main cutting edges of the other cutter inserts.
    Type: Grant
    Filed: April 28, 1987
    Date of Patent: February 28, 1989
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Osamu Tsujimura, Tatsuo Arai
  • Patent number: 4808390
    Abstract: A process for converting UF.sub.6 gas into UO.sub.2 powder comprising blowing UF.sub.6 gas and steam into a fluid bed to produce UO.sub.2 F.sub.2 particle, hydrating and dehydrating the UO.sub.2 F.sub.2 particle to UO.sub.2 F.sub.2 powder, and defluorinating and reducing the UO.sub.2 F.sub.2 powder to UO.sub.2 powder. The UO.sub.2 powder is suitable for manufacturing a reactor fuel owing to its high activity, low remaining fluorine amount and excellent fluidity.
    Type: Grant
    Filed: June 2, 1986
    Date of Patent: February 28, 1989
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Hiroshi Tanaka, Akio Umemura
  • Patent number: 4808045
    Abstract: An end mill includes a body having a core receiving recess and a cutting insert releasably mounted thereon. An upper surface of the insert has a first cutting edge ridge serving as an outer peripheral cutting edge, a second cutting edge ridge providing an end cutting edge and a third cutting edge ridge providing an inner peripheral cutting edge. The upper surface has a corner where the second and third cutting edge ridge intersecting each other. The upper surface is composed of a central portion and a corner portion including the corner, whereby the third cutting edge ridge comprising a first edge portion defined by a ridge of the corner portion and a second edge portion defined by a ridge of the central portion. At least that portion of the corner portion disposed adjacent the central portion is inclined providing a thickness of the insert is progressively reduced toward the corner. The insert has a negative radial rake at the outer peripheral cutting edge and a positive axial rake.
    Type: Grant
    Filed: June 23, 1987
    Date of Patent: February 28, 1989
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Osamu Tsujimura, Takayoshi Saito, Tatsuo Arai, Yasuzo Funaki
  • Patent number: 4788048
    Abstract: A process for conversion of gaseous UF.sub.6 to UO.sub.2 powders by using a fluidized bed reaction apparatus comprising pyrohydrolizing gaseous UF.sub.6 and steam to obtain UO.sub.2 F.sub.2 particles, hydrating and dehydrating the UO.sub.2 F.sub.2 particles to UO.sub.2 F.sub.2 anhydride and reducing the UO.sub.2 F.sub.2 anhydride to UO.sub.2 powders. The obtained UO.sub.2 powders are suitable for production of nuclear fuels in power plant owing to its good ceramic properties, low fluorine contents and free flowability.
    Type: Grant
    Filed: June 9, 1986
    Date of Patent: November 29, 1988
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Hiroshi Tanaka, Akio Umemura
  • Patent number: 4781989
    Abstract: A surface-coated cutting member includes a substrate, a metal layer vapor-deposited on a surface of the substrate and a hard coating vapor-deposited on the metal layer. The substrate is made of hard material selected from the group consisting of tungsten carbide-based cemented carbide, titanium carbo-nitride based cermet and high speed steel. The metal layer is made of metal selected from Group IVa of the Periodic Table and has an average thickness of 0.1 to 1 .mu.m. The hard coating has an average thickness of 1 to 9 .mu.m, and includes an inner layer of an average thickness of 0.2 to 4 .mu.m vapor-deposited on the metal layer, an intermediate layer of an average thickness of 0.2 to 4 .mu.m vapor-deposited on the inner layer and an outer layer of an average thickness of 0.2 to 3 .mu.m vapor-deposited on the intermediate layer.
    Type: Grant
    Filed: March 5, 1987
    Date of Patent: November 1, 1988
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Hironori Yoshimura, Munenori Kato
  • Patent number: 4780373
    Abstract: A heat-transfer material is produced by: preparing a body of metal serving as a cathode; subsequently keeping a surface of the body and an anode in contact with a plating aqueous solution; and applying a direct electrical potential between the anode and the cathode to cause a plating current to flow through the plating solution to produce slime from the anode and to lay deposits of plating metal on the surface of the body and moving the slime to the surface of the body to lay deposits of the slime on the surface of the body, so that the deposits of plating metal and the deposits of the slime jointly form on the surface of the body a porous layer which has minuscule projections of electrodeposits densely formed on one surface of the layer directed away from the body.
    Type: Grant
    Filed: November 25, 1986
    Date of Patent: October 25, 1988
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Yasuo Masuda, Tsutomu Takahashi, Yoshio Takizawa, Naokazu Yoshiki
  • Patent number: 4765955
    Abstract: The alloys according to the invention are the Co-base alloys which contain C, Si, Cr, W, Mo, Ti and Al, and further, as necessary, contain one, two or more elements among Mn, Ni, Fe, Nb and B, having high thermal shock resistance and lead oxide corrosion resistance. Furthermore the alloys can be used for build-up welding and casting, therefore they demonstrate excellent performance when used in the manufacture of engine valves and valves seats of high performance engines.
    Type: Grant
    Filed: September 2, 1986
    Date of Patent: August 23, 1988
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Ritsue Yabuki, Junya Ohe, Sadao Saitoh
  • Patent number: 4750953
    Abstract: A copper-base shape-memory alloy consisting essentially of 15-35% Zn, 3.2-10% Al, 0.01-1% Si, at least one element selected from the group of 0.5-2% Ti, 0.01-1% Cr, 0.01-8% Mn, 0.01-2% Co and 2.1-4% Ni, the balance being Cu and incidental impurities, the percent being by weight is disclosed.This alloy has high resistance to intercrystalline cracking and thermal cycling as well as improved shape-memory properties.
    Type: Grant
    Filed: May 7, 1986
    Date of Patent: June 14, 1988
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventor: Kazuhiko Tabei
  • Patent number: 4749548
    Abstract: Copper alloy lead materials used in the fabrication of semiconductor devices such as ICs and LSIs are required to have a tensile strength of 40 kgf/mm.sup.2 or more, an elongation of 4% or more, an electrical conductivity of 50% IACS or more, and a softening point of 400.degree. C. or higher.The copper alloy lead material of the present invention exhibits even higher degrees of tensile strength and elongation and yet satisfy the values of electrical conductivity and softening point that are required for Cu alloy lead materials to be used with ordinary semiconductor devices. Therefore, the Cu alloy lead material of the present invention is applicable not only to ordinary semiconductor devices but also to those with higher packing densities while displaying equally superior performance.
    Type: Grant
    Filed: September 3, 1986
    Date of Patent: June 7, 1988
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Hidetoshi Akutsu, Takuro Iwamura, Masao Kobayashi
  • Patent number: 4748361
    Abstract: An electric motor includes a housing, a rotor and a stator. The rotor includes a rotor shaft rotatably supported on the housing. The rotor includes a plurality of disk portions disposed on the rotor shaft coaxially therewith and spaced from each other axially of the rotor shaft. Each of the disk portions has a thickness gradually decreasing radially outwardly thereof. The stator includes a plurality of annular portions disposed on the housing coaxially with the rotor shaft and spaced from each other axially of the rotor shaft. Each of the annular portions has a thickness gradually decreasing radially inwardly thereof. The annular portions and the disk portions are loosely fitted with each other with a gap formed therebetween. Opposed side surfaces of the annular portion and disk portion are conical. Each of the annular portions has a coil disposed in each conical side surface thereof. Each of the disk portions has permanent magnets disposed at least in each conical side surface thereof.
    Type: Grant
    Filed: December 4, 1986
    Date of Patent: May 31, 1988
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Kouhei Ohnishi, Akira Mochizuki
  • Patent number: 4744821
    Abstract: A process for producing metal granules from a molten metal or molten alloy in a refractory vessel by dropping small globules of the melt into a coolant through a small-diameter nozzle provided at the bottom of said refractory vessel is disclosed. The nozzle has one or more vertical holes of an inside diameter of 0.3 to 3.0 mm; the globules of the melt emerging from said nozzle are dropped into a two-layered cooling medium composed of an overlying oil layer having a viscosity grade of 10-680 according to the ISO VG and underlying water layer; said globules are solidified and cooled as they pass through said cooling medium. Spherical metal particles having a uniform size can be produced efficiently in a high yield.
    Type: Grant
    Filed: July 29, 1986
    Date of Patent: May 17, 1988
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Ritsue Yabuki, Junya Ohe
  • Patent number: 4744705
    Abstract: A twist drill bit includes a cylindrical body having a pair of spiral grooves formed in an outer peripheral surface of the body and extending spirally along a length thereof to a forward end of the body. Each of the grooves has a forward portion defined by a first surface which is concavely arcuate when viewed from the forward end and extends from the outer periphery of the body generally radially inwardly thereof and a second surface which is convexly arcuate when viewed from the forward end and extends from an inner end of the first surface to the outer periphery of the body. Each of the first surfaces serves as a rake surface which terminates at the forward end in a cutting edge which is concavely curved when viewed from the forward end. Each of the cutting edges is coated with a hard coating which is harder than the body. The body has a web thickness of 0.25 D to 0.5 D wherein D is a diameter of said body, and the first surface has a radius of curvature of 0.20 D to 0.
    Type: Grant
    Filed: August 11, 1986
    Date of Patent: May 17, 1988
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventor: Koujirou Imanaga
  • Patent number: 4731296
    Abstract: A diamond-coated tungsten carbide-base sintered hard alloy material for inserts of cutting tools, which has greatly improved bond strength or degree of bonding of the diamond coating layer to the matrix and therefore is capable of exhibiting excellent cutting performance over a long period of time.The sintered hard alloy material comprises:(1) a matrix of a sintered hard alloy consisting essentially of 1-4 percent by weight cobalt, and the balance of tungsten carbide and inevitable impurities, the tungsten carbide having a coarse grain structure having an average grain size of 2-10 microns; and(2) a diamond coating layer formed over surfaces of the matrix by forming an etching layer over the matrix surfaces and then forming the diamond coating layer over the matrix surfaces via the etching layer by a low pressure vapor-phase synthesization method.If required, the matrix may further contain CO1-CO8 (ISO) free carbon.
    Type: Grant
    Filed: June 24, 1987
    Date of Patent: March 15, 1988
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Noribumi Kikuchi, Tetsuro Komatsu, Hiroaki Yamasita, Hironori Yoshimura
  • Patent number: 4727740
    Abstract: This invention relates to the thermal and wear resistant, tough alloy at elevated temperatures. The alloy consists essentially of carbon, chromium, iron, titanium, aluminum, tungsten, molybdenum, silicon, manganese, cobalt and balance nickel, further the alloy includes optionally at least one selected from the group consisting of nitrogen, niobium and tantalum, further the alloy includes optionally at least one selected from the group consisting of nitrogen, niobium and tantalum, further the alloy includes optionally at least one selected from the group consisting of boron and zirconium. The alloy according to this invention are widely utilized to serve as the alloy for build-up weld and for guide shoe used in the hot rolling apparatus for fabricating seamless steel pipe.
    Type: Grant
    Filed: April 24, 1986
    Date of Patent: March 1, 1988
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Ritsue Yabuki, Junya Ohe, Takumi Kawamura
  • Patent number: 4726859
    Abstract: An inexpensive, very fine wire of high-purity copper is disclosed as an alternative to the fine gold wire which is currently used in the bonding of semiconductor devices. The very fine wire of high-purity copper is prepared from a copper ingot that contains 0-2 ppm of S, 0-2 ppm of Ag, 0-1 ppm of Se and 0-1 ppm of Te as incidental impurities with the total content of these and any other incidental impurities present being held at a level not exceeding 10 ppm. By subjecting it to an appropriate heat treatment, the wire acquires an elongation of 5-22%, a breaking strength of 14-33 kg/mm.sup.2, and a Vickers hardness of 38-50, the latter value being measured with respect to said high-purity copper in an ingot form.
    Type: Grant
    Filed: March 27, 1986
    Date of Patent: February 23, 1988
    Assignees: Mitsubishi Kinzoku Kabushiki Kaisha, Mitsubishi Denki Kabushiki Kaisha
    Inventors: Naoyuki Hosoda, Naoki Uchiyama, Toshiaki Ono, Ryusuke Kawanaka
  • Patent number: 4717436
    Abstract: The present invention eliminates the problems associated with the use of oxygen-free copper and other high-purity copper materials as bonding wires. In accordance with one aspect of the present invention, at least one rare earth element, or at least one element selected from the group consisting of Mg, Ca, Ti, Zr, Hf, Li, Na, K, Rb and Cs, or the combination of at least one rare earth element and at least one elemented selected from the above-specified group is incorporated in high-purity copper as a refining component in an amount of 0.1-100 ppm on a weight basis, and the high-purity copper is subsequently refined by zone melting. The very fine wire drawn from the so refined high-purity copper has the advantage that it can be employed in high-speed ball bonding of a semiconductor chip with a minimum chance of damaging the bonding pad on the chip by the ball forming at the tip of the wire.In accordance with another aspect of the present invention, 0.
    Type: Grant
    Filed: April 9, 1987
    Date of Patent: January 5, 1988
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Naoyuki Hosoda, Masaki Morikawa, Naoki Uchiyama, Hideaki Yoshida, Toshiaki Ono