Patents Assigned to Nanosys, Inc.
  • Patent number: 9260655
    Abstract: Quantum-dot binding ligands with easy to synthesize alkyl-acids are provided. The quantum-dot binding ligands include a multiplicity of carboxy binding ligands in combination with an alkyl backbone, and optionally a solubilizing group. The ligands and coated nanostructures of the present invention are useful for close packed nanostructure compositions, which can have improved quantum confinement and/or reduced cross-talk between nanostructures.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: February 16, 2016
    Assignee: Nanosys, Inc.
    Inventors: William P. Freeman, Paul T. Furuta, Robert Dubrow
  • Publication number: 20160009988
    Abstract: The present invention provides methods for hermetically sealing luminescent nanocrystals, as well as compositions and containers comprising hermetically scaled luminescent nanocrystals. By hermetically sealing the luminescent nanocrystals, enhanced lifetime and luminescence can be achieved.
    Type: Application
    Filed: September 18, 2015
    Publication date: January 14, 2016
    Applicant: Nanosys, Inc.
    Inventor: Robert S. DUBROW
  • Patent number: 9199842
    Abstract: Light-emitting quantum dot films, quantum dot lighting devices, and quantum dot-based backlight units are provided. Related compositions, components, and methods are also described. Improved quantum dot encapsulation and matrix materials are provided. Quantum dot films with protective barriers are described. High-efficiency, high brightness, and high-color purity quantum dot-based lighting devices are also included, as well as methods for improving efficiency and optical characteristics in quantum dot-based lighting devices.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: December 1, 2015
    Assignee: Nanosys, Inc.
    Inventors: Robert S. Dubrow, William P. Freeman, Ernest Lee, Paul Furuta
  • Patent number: 9169435
    Abstract: Highly luminescent nanostructures, particularly highly luminescent quantum dots, are provided. The nanostructures have high photoluminescence quantum yields and in certain embodiments emit light at particular wavelengths and have a narrow size distribution. The nanostructures can comprise ligands, including C5-C8 carboxylic acid ligands employed during shell formation and/or dicarboxylic or polycarboxylic acid ligands provided after synthesis. Processes for producing such highly luminescent nanostructures are also provided, including methods for enriching nanostructure cores with indium and techniques for shell synthesis.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: October 27, 2015
    Assignee: Nanosys, Inc.
    Inventors: Wenzhuo Guo, Jian Chen, Robert Dubrow, William P. Freeman
  • Publication number: 20150300600
    Abstract: Light-emitting quantum dot films, quantum dot lighting devices, and quantum dot-based backlight units are provided. Related compositions, components, and methods are also described. Improved quantum dot encapsulation and matrix materials are provided. Quantum dot films with protective barriers are described. High-efficiency, high brightness, and high-color purity quantum dot-based lighting devices are also included, as well as methods for improving efficiency and optical characteristics in quantum dot-based lighting devices.
    Type: Application
    Filed: February 3, 2015
    Publication date: October 22, 2015
    Applicant: Nanosys, Inc.
    Inventors: Robert S. DUBROW, William P. Freeman, Ernest Lee, Paul Furuta
  • Patent number: 9139770
    Abstract: Siloxane polymer ligands for binding to quantum dots are provided. The polymers include a multiplicity of amine or carboxy binding ligands in combination with long-alkyl chains providing improved stability for the ligated quantum dots. The ligands and coated nanostructures of the present invention are useful for close packed nanostructure compositions, which can have improved quantum confinement and/or reduced cross-talk between nano structures.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: September 22, 2015
    Assignee: Nanosys, Inc.
    Inventors: William P. Freeman, Paul T. Furuta, Wendy Guo, Robert Dubrow, J. Wallace Parce
  • Patent number: 9139767
    Abstract: The present invention provides methods for hermetically sealing luminescent nanocrystals, as well as compositions and containers comprising hermetically sealed luminescent nanocrystals. By hermetically sealing the luminescent nanocrystals, enhanced lifetime and luminescence can be achieved.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: September 22, 2015
    Assignee: Nanosys, Inc.
    Inventor: Robert S. Dubrow
  • Publication number: 20150259597
    Abstract: The present invention provides light-emitting diode (LED) devices comprises compositions and containers of hermetically sealed luminescent nanocrystals. The present invention also provides displays comprising the LED devices. Suitably, the LED devices are white light LED devices.
    Type: Application
    Filed: February 19, 2015
    Publication date: September 17, 2015
    Applicant: Nanosys, Inc.
    Inventors: Robert S. DUBROW, Jian CHEN, Veeral D. HARDEV, Hans Jurgen HOFLER, Ernest LEE
  • Patent number: 9133394
    Abstract: Quantum-dot binding ligands with silsesquioxane moieties are provided. The quantum-dot binding ligands include a multiplicity of amine or carboxy binding ligands in combination with silsesquioxane moieties providing improved stability for the ligated quantum dots. The ligands and coated nanostructures of the present invention are useful for close packed nanostructure compositions, which can have improved quantum confinement and/or reduced cross-talk between nanostructures.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: September 15, 2015
    Assignee: Nanosys, Inc.
    Inventors: William P. Freeman, Paul T. Furuta, Robert Dubrow, J. Wallace Parce
  • Publication number: 20150232756
    Abstract: Highly luminescent nanostructures, particularly highly luminescent quantum dots, are provided. The nanostructures have high photoluminescence quantum yields and in certain embodiments emit light at particular wavelengths and have a narrow size distribution. The nanostructures can comprise ligands, including C5-C8 carboxylic acid ligands employed during shell formation and/or dicarboxylic or polycarboxylic acid ligands provided after synthesis. Processes for producing such highly luminescent nanostructures are also provided, including methods for enriching nanostructure cores with indium and techniques for shell synthesis.
    Type: Application
    Filed: March 26, 2015
    Publication date: August 20, 2015
    Applicant: Nanosys, Inc.
    Inventors: Wenzhuo GUO, Jian Chen, Robert Dubrow, William P. Freeman
  • Publication number: 20150166342
    Abstract: Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes are optionally formed from the ligands. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided.
    Type: Application
    Filed: November 19, 2014
    Publication date: June 18, 2015
    Applicant: Nanosys, Inc.
    Inventors: Mingjun LIU, Robert S. DUBROW, William P. FREEMAN, Adrienne D. KUCMA, J. Wallace PARCE
  • Publication number: 20150124195
    Abstract: Embodiments of a display device and a method of reducing optical leakage from a backlight unit of a display device are described. The display device includes a backlight unit, an image generating unit coupled to the backlight unit and a blocking structure. The backlight unit is configured to transit light to the image generating unit and the blocking structure is configured to prevent the light from reaching the image generating unit without passing through the optical processing unit. The backlight unit includes a light source unit and an optical processing unit having a quantum dot film coupled to the light source unit. The method of reducing optical leakage from the backlight unit of the display device includes providing a first blocking structure to a portion of the light source unit and providing a second blocking structure to a portion of the optical processing unit.
    Type: Application
    Filed: November 4, 2014
    Publication date: May 7, 2015
    Applicant: Nanosys, Inc.
    Inventors: Jian CHEN, Steven Gensler
  • Patent number: 9005480
    Abstract: The present invention describes a solventless ligand exchange using a siloxane polymer having a binding ligand that displaces the binding ligand on a quantum dot material.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: April 14, 2015
    Assignee: Nanosys, Inc.
    Inventors: Paul T. Furuta, Robert Dubrow
  • Patent number: 8956637
    Abstract: This invention provides novel nanofiber enhanced surface area substrates and structures comprising such substrates for use in various medical devices, as well as methods and uses for such substrates and medical devices. In one particular embodiment, methods for enhancing cellular functions on a surface of a medical device implant are disclosed which generally comprise providing a medical device implant comprising a plurality of nanofibers (e.g., nanowires) thereon and exposing the medical device implant to cells such as osteoblasts.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: February 17, 2015
    Assignee: Nanosys, Inc.
    Inventors: Robert S. Dubrow, Lawrence A. Bock, R. Hugh Daniels, Veeral D. Hardev, Chunming Niu, Vijendra Sahi
  • Patent number: 8916064
    Abstract: Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes are optionally formed from the ligands. The matrixes of the present invention can be used as refractive index matching components, filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: December 23, 2014
    Assignee: Nanosys, Inc.
    Inventors: Mingjun Liu, Robert S. Dubrow, William P. Freeman, Adrienne D. Kucma, J. Wallace Parce
  • Patent number: 8884273
    Abstract: Methods for producing nanostructures, particularly Group III-V semiconductor nanostructures, are provided. The methods include use of novel Group III and/or Group V precursors, novel surfactants, oxide acceptors, high temperature, and/or stable co-products. Related compositions are also described. Methods and compositions for producing Group III inorganic compounds that can be used as precursors for nanostructure synthesis are provided. Methods for increasing the yield of nanostructures from a synthesis reaction by removal of a vaporous by-product are also described.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: November 11, 2014
    Assignee: Nanosys, Inc.
    Inventors: Erik C. Scher, Mihai A. Buretea, William P. Freeman, Joel Gamoras, Baixin Qian, Jeffery A. Whiteford
  • Publication number: 20140275598
    Abstract: Quantum-dot binding ligands with silsesquioxane moieties are provided. The quantum-dot binding ligands include a multiplicity of amine or carboxy binding ligands in combination with silsesquioxane moieties providing improved stability for the ligated quantum dots. The ligands and coated nanostructures of the present invention are useful for close packed nanostructure compositions, which can have improved quantum confinement and/or reduced cross-talk between nanostructures.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: Nanosys, Inc.
    Inventors: William P. Freeman, Paul T. Furuta, Robert Dubrow, J. Wallace Parce
  • Publication number: 20140275431
    Abstract: Quantum-dot binding ligands with easy to synthesize alkyl-acids are provided. The quantum-dot binding ligands include a multiplicity of carboxy binding ligands in combination with an alkyl backbone, and optionally a solubilizing group. The ligands and coated nanostructures of the present invention are useful for close packed nanostructure compositions, which can have improved quantum confinement and/or reduced cross-talk between nanostructures.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: Nanosys, Inc.
    Inventors: William P. Freeman, Paul T. Furuta, Robert Dubrow
  • Publication number: 20140264189
    Abstract: The present invention describes a solventless ligand exchange using a siloxane polymer having a binding ligand that displaces the binding ligand on a quantum dot material.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: Nanosys, Inc.
    Inventors: Paul T. Furuta, Robert Dubrow
  • Patent number: 8815399
    Abstract: Provided is a carbon nanotube (CNT) transparent conductive layer having a loop pattern in which a plurality of loops are at least partially connected to one another, and a fabrication method thereof. The loops in the pattern are generated by a spray-coating method and partially connected with one anther, and thus improving transparency and conductivity of the CNT transparent conductive layer. In Addition, the CNT transparent conductive layer has conductivity and sheet resistance highly suitable for a transparent electrode.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: August 26, 2014
    Assignee: Top Nanosys, Inc.
    Inventors: Sang Keun Oh, Kyoung Hwa Song, Da Jeong Jeong, Do Hyeong Park, Dong-Myeon Lee