Patents Assigned to Nanosys, Inc.
  • Publication number: 20180155623
    Abstract: Highly luminescent nanostructures, particularly highly luminescent quantum dots, are provided. The nanostructures have high photoluminescence quantum yields and in certain embodiments emit light at particular wavelengths and have a narrow size distribution. The nanostructures can comprise ligands, including C5-C8 carboxylic acid ligands employed during shell formation and/or dicarboxylic or polycarboxylic acid ligands provided after synthesis. Processes for producing such highly luminescent nanostructures are also provided, including methods for enriching nanostructure cores with indium and techniques for shell synthesis.
    Type: Application
    Filed: December 22, 2017
    Publication date: June 7, 2018
    Applicant: Nanosys, Inc.
    Inventors: Wenzhuo GUO, Jian CHEN, Robert DUBROW, William P. FREEMAN
  • Patent number: 9969844
    Abstract: The present invention relates to silicone polymer ligands for binding to quantum dots. The silicone polymer ligands contain a multiplicity of amine, carboxy, and/or phosphine binding groups suitable for attachment to quantum dots. The present invention also describes a process for the preparation of quantum dot binding ligands.
    Type: Grant
    Filed: July 16, 2015
    Date of Patent: May 15, 2018
    Assignee: Nanosys, Inc.
    Inventor: Paul T. Furuta
  • Patent number: 9927649
    Abstract: Embodiments of a display device and a method of reducing optical leakage from a backlight unit of a display device are described. The display device includes a backlight unit, an image generating unit coupled to the backlight unit and a blocking structure. The backlight unit is configured to transit light to the image generating unit and the blocking structure is configured to prevent the light from reaching the image generating unit without passing through the optical processing unit. The backlight unit includes a light source unit and an optical processing unit having a quantum dot film coupled to the light source unit. The method of reducing optical leakage from the backlight unit of the display device includes providing a first blocking structure to a portion of the light source unit and providing a second blocking structure to a portion of the optical processing unit.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: March 27, 2018
    Assignee: NANOSYS, INC.
    Inventors: Jian Chen, Steven Gensler
  • Patent number: 9909062
    Abstract: The present invention provides light-emitting diode (LED) devices comprises compositions and containers of hermetically sealed luminescent nanocrystals. The present invention also provides displays comprising the LED devices. Suitably, the LED devices are white light LED devices.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: March 6, 2018
    Assignee: Nanosys, Inc.
    Inventors: Robert S. Dubrow, Jian Chen, Veeral D. Hardev, Hans Jurgen Hofler, Ernest Lee
  • Patent number: 9884993
    Abstract: Highly luminescent nanostructures, particularly highly luminescent quantum dots, are provided. The nanostructures have high photoluminescence quantum yields and in certain embodiments emit light at particular wavelengths and have a narrow size distribution. The nanostructures can comprise ligands, including C5-C8 carboxylic acid ligands employed during shell formation and/or dicarboxylic or polycarboxylic acid ligands provided after synthesis. Processes for producing such highly luminescent nanostructures are also provided, including methods for enriching nanostructure cores with indium and techniques for shell synthesis.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: February 6, 2018
    Assignee: NANOSYS, INC.
    Inventors: Wenzhuo Guo, Jian Chen, Robert Dubrow, William P. Freeman
  • Patent number: 9884763
    Abstract: Methods for producing nanostructures, particularly Group III-V semiconductor nanostructures, are provided. The methods include use of novel Group III and/or Group V precursors, novel surfactants, oxide acceptors, high temperature, and/or stable co-products. Related compositions are also described. Methods and compositions for producing Group III inorganic compounds that can be used as precursors for nanostructure synthesis are provided. Methods for increasing the yield of nanostructures from a synthesis reaction by removal of a vaporous by-product are also described.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: February 6, 2018
    Assignee: NANOSYS, INC.
    Inventors: Erik C. Scher, Mihai A. Buretea, William P. Freeman, Joel Gamoras, Balxin Qian, Jeffrey A. Whiteford
  • Publication number: 20180022992
    Abstract: The present invention provides methods for hermetically sealing luminescent nanocrystals, as well as compositions and containers comprising hermetically sealed luminescent nanocrystals. By hermetically sealing the luminescent nanocrystals, enhanced lifetime and luminescence can be achieved.
    Type: Application
    Filed: September 5, 2017
    Publication date: January 25, 2018
    Applicant: Nanosys, Inc.
    Inventor: Robert S. DUBROW
  • Publication number: 20170373232
    Abstract: Embodiments of a population of buffered barrier layer coated nanostructures and a method of making the nanostructures are described. Each of the buffered barrier layer coated nanostructures includes a nanostructure, an optically transparent buffer layer disposed on the nanostructure, and an optically transparent buffered barrier layer disposed on the buffer layer. The buffered barrier layer is configured to provide a spacing between adjacent nanostructures in the population of buffered barrier layer coated nanostructures to reduce aggregation of the adjacent nanostructures. The method for making the nanostructures includes forming a solution of reverse micro-micelles using surfactants, incorporating nanostructures into the reverse micro-micelles, and incorporating a buffer agent into the reverse micro-micelles.
    Type: Application
    Filed: June 21, 2017
    Publication date: December 28, 2017
    Applicant: Nanosys, Inc.
    Inventors: Shihai KAN, Jay YAMANAGA, Charles HOTZ, Christian IPPEN, Wenzhuo GUO
  • Patent number: 9804319
    Abstract: Light-emitting quantum dot films, quantum dot lighting devices, and quantum dot-based backlight units are provided. Related compositions, components, and methods are also described. Improved quantum dot encapsulation and matrix materials are provided. Quantum dot films with protective barriers are described. High-efficiency, high brightness, and high-color purity quantum dot-based lighting devices are also included, as well as methods for improving efficiency and optical characteristics in quantum dot-based lighting devices.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: October 31, 2017
    Assignee: Nanosys, Inc.
    Inventors: Robert S. Dubrow, William P. Freeman, Ernest Lee, Paul Furuta
  • Publication number: 20170269432
    Abstract: Embodiments of a device and a method of forming the same are described. The device includes a backlight unit and an image generating unit. The backlight unit includes an optical cavity having a top side, a bottom side, and side walls. The backlight unit further includes an array of light sources coupled to the optical cavity and a quantum dot film positioned within the optical cavity. The quantum dot film is configured to process, light received from the array of light sources and the backlight unit is configured to transit the processed light to the image generating unit. The method includes providing an optical cavity having a top side, a bottom side, and side walls. The method further includes coupling an array of light sources to the optical cavity and supporting a quantum dot film within the optical cavity.
    Type: Application
    Filed: April 4, 2017
    Publication date: September 21, 2017
    Applicant: Nanosys, Inc.
    Inventors: Ernest LEE, Robert E. WILSON, Steven GENSLER
  • Patent number: 9753212
    Abstract: Light-emitting quantum dot films, quantum dot lighting devices, and quantum dot-based backlight units are provided. Related compositions, components, and methods are also described. Improved quantum dot encapsulation and matrix materials are provided. Quantum dot films with protective barriers are described. High-efficiency, high brightness, and high-color purity quantum dot-based lighting devices are also included, as well as methods for improving efficiency and optical characteristics in quantum dot-based lighting devices.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: September 5, 2017
    Assignee: Nanosys, Inc.
    Inventors: Robert S. Dubrow, William P. Freeman, Ernest Lee, Paul Furuta
  • Publication number: 20170250322
    Abstract: Low concentration cadmium-containing quantum dot compositions are disclosed which, when contained in a film within a display, exhibit high color gamut, high energy efficiency, and a narrow full width at half maximum at individual wavelength emissions.
    Type: Application
    Filed: February 24, 2017
    Publication date: August 31, 2017
    Applicant: NANOSYS, Inc.
    Inventors: Chunming WANG, Charlie HOTZ, Jason HARTLOVE, Ernest LEE
  • Patent number: 9688534
    Abstract: Methods for producing nanostructures, particularly Group III-V semiconductor nanostructures, are provided. The methods include use of novel Group III and/or Group V precursors, novel surfactants, oxide acceptors, high temperature, and/or stable co-products. Related compositions are also described. Methods and compositions for producing Group III inorganic compounds that can be used as precursors for nanostructure synthesis are provided. Methods for increasing the yield of nanostructures from a synthesis reaction by removal of a vaporous by-product are also described.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: June 27, 2017
    Assignee: NANOSYS, INC.
    Inventors: Erik C. Scher, Mihai A. Buretea, William P. Freeman, Joel Gamoras, Baixin Qian, Jeffrey A. Whiteford
  • Patent number: 9685583
    Abstract: Highly luminescent nanostructures, particularly highly luminescent quantum dots, are provided. The nanostructures have high photoluminescence quantum yields and in certain embodiments emit light at particular wavelengths and have a narrow size distribution. The nanostructures can comprise ligands, including C5-C8 carboxylic acid ligands employed during shell formation and/or dicarboxylic or polycarboxylic acid ligands provided after synthesis. Processes for producing such highly luminescent nanostructures are also provided, including methods for enriching nanostructure cores with indium and techniques for shell synthesis.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: June 20, 2017
    Assignee: NANOSYS, Inc.
    Inventors: Wenzhuo Guo, Jian Chen, Robert Dubrow, William P. Freeman
  • Patent number: 9677001
    Abstract: The present invention provides light-emitting diode (LED) devices comprises compositions and containers of hermetically sealed luminescent nanocrystals. The present invention also provides displays comprising the LED devices. Suitably, the LED devices are white light LED devices.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: June 13, 2017
    Assignee: Nanosys, Inc.
    Inventors: Robert S. Dubrow, Jian Chen, Veeral D. Hardev, H. Jurgen Hofler, Ernest Lee
  • Publication number: 20170162764
    Abstract: Quantum dots and methods of making quantum dots are described. A method begins with forming quantum dots having a core-shell structure with a plurality of ligands on the shell structure. The method includes exchanging the plurality of ligands with a plurality of second ligands. The plurality of second ligands have a weaker binding affinity to the shell structure than the plurality of first ligands. The plurality of second ligands are then exchanged with hydrolyzed alkoxysilane to form a monolayer of hydrolyzed alkoxysilane on a surface of the shell structure. The method includes forming a barrier layer around the shell structure by using the hydrolyzed alkoxysilane as a nucleation center.
    Type: Application
    Filed: December 2, 2016
    Publication date: June 8, 2017
    Applicant: Nanosys, Inc.
    Inventors: Shihai KAN, Jay Yamanaga, Charles Hotz, Jason Hartlove, Veeral Hardev, Jian Chen, Christian Ippen, Wenzhuo Guo, Robert Wilson
  • Publication number: 20170162756
    Abstract: Embodiments of a display device including barrier layer coated quantum dots and a method of making the barrier layer coated quantum dots are described. Each of the barrier layer coated quantum dots includes a core-shell structure and a hydrophobic barrier layer disposed on the core-shell structure. The hydrophobic barrier layer is configured to provide a distance between the core-shell structure of one of the quantum dots with the core-shell structures of other quantum dots that are in substantial contact with the one of the quantum dots. The method for making the barrier layer coated quantum dots includes forming reverse micro-micelles using surfactants and incorporating quantum dots into the reverse micro-micelles. The method further includes individually coating the incorporated quantum dots with a barrier layer and isolating the barrier layer coated quantum dots with the surfactants of the reverse micro-micelles disposed on the barrier layer.
    Type: Application
    Filed: December 2, 2016
    Publication date: June 8, 2017
    Applicant: Nanosys, Inc.
    Inventors: Jason HARTLOVE, Veeral Hardev, Shihai Kan, Jian Chen, Jay Yamanaga, Christian Ippen, Wenzhuo Guo, Charles Hotz, Robert Wilson
  • Patent number: 9658489
    Abstract: Embodiments of a device and a method of forming the same are described. The device includes a backlight unit and an image generating unit. The backlight unit includes an optical cavity having a top side, a bottom side, and side walls. The backlight unit further includes an array of light sources coupled to the optical cavity and a quantum dot film positioned within the optical cavity. The quantum dot film is configured to process light received from the array of light sources and the backlight unit is configured to transit the processed light to the image generating unit. The method includes providing an optical cavity having a top side, a bottom side, and side walls. The method further includes coupling an array of light sources to the optical cavity and supporting a quantum dot film within the optical cavity.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: May 23, 2017
    Assignee: Nanosys, Inc.
    Inventors: Ernest Lee, Robert E. Wilson, Steven Gensler
  • Patent number: 9631141
    Abstract: Highly luminescent nanostructures, particularly highly luminescent quantum dots, are provided. The nanostructures have high photoluminescence quantum yields and in certain embodiments emit light at particular wavelengths and have a narrow size distribution. The nanostructures can comprise ligands, including C5-C8 carboxylic acid ligands employed during shell formation and/or dicarboxylic or polycarboxylic acid ligands provided after synthesis. Processes for producing such highly luminescent nanostructures are also provided, including methods for enriching nanostructure cores with indium and techniques for shell synthesis.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: April 25, 2017
    Assignee: Nanosys, Inc.
    Inventors: Wenzhuo Guo, Jian Chen, Robert Dubrow, William P. Freeman
  • Publication number: 20160349428
    Abstract: Light-emitting quantum dot films, quantum dot lighting devices, and quantum dot-based backlight units are provided. Related compositions, components, and methods are also described. Improved quantum dot encapsulation and matrix materials are provided. Quantum dot films with protective barriers are described. High-efficiency, high brightness, and high-color purity quantum dot-based lighting devices are also included, as well as methods for improving efficiency and optical characteristics in quantum dot-based lighting devices.
    Type: Application
    Filed: February 8, 2016
    Publication date: December 1, 2016
    Applicant: Nanosys, Inc.
    Inventors: Robert S. DUBROW, William P. FREEMAN, Ernest LEE, Paul FURUTA