Patents Assigned to Nanya Technology Corp.
  • Publication number: 20140118041
    Abstract: A signal phase adjusting loop comprising a multiphase generator and a phase adjusting circuit. The multiphase generator comprises a ring phase shifting loop having a plurality of output terminals and phase shifting units. The ring phase shifting loop phase-shifts the delayed input clock signal to generate output clock signals with different phases, wherein the output clock signals are respectively output at different output terminals. The phase adjusting circuit receives one of the output clock signals and an input signal to adjust a phase of the input signal according to a phase of the one of the output clock signals.
    Type: Application
    Filed: November 25, 2013
    Publication date: May 1, 2014
    Applicant: NANYA TECHNOLOGY CORP.
    Inventor: Yantao Ma
  • Patent number: 8697316
    Abstract: A hard mask spacer structure includes a first spacer on a device layer, the first spacer defining a plurality of hole patterns and at least an asteriated hole pattern between the hole patterns; and a second spacer on the first spacer and inlaid into the asteriated hole pattern, thereby rounding the asteriated hole pattern.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: April 15, 2014
    Assignee: Nanya Technology Corp.
    Inventors: Ya-Chih Wang, Hai-Han Hung, Wen-Chieh Wang
  • Patent number: 8699255
    Abstract: A memory array includes a plurality of word lines extending along a first direction; a plurality of memory cells coupled to a first sub-bit line (SBL) extending along a second direction that is substantially orthogonal to the first direction; a first selector region disposed substantially in the middle of the first SBL thereby dividing the plurality of memory cells into two sub-groups, wherein the first selector region comprises at least one selector transistor that is coupled to the first SBL; and a main bit line (MBL) extending along the second direction and coupled to the selector transistor.
    Type: Grant
    Filed: April 1, 2012
    Date of Patent: April 15, 2014
    Assignee: Nanya Technology Corp.
    Inventors: Chien-An Yu, Yi-Fong Lin
  • Patent number: 8699003
    Abstract: A method for determining an illumination source with optimized depth of focus includes the following steps. First, a simulated optimal correlation and a simulated defocus correlation of each illumination source are provided. Second, an optimal peak is determined, a defocus peak is determined, and an optimal correlation slope and a defocus correlation slope are determined. An optimal correlation ratio and a peak variation are calculated. A correlation variation is calculated from the optimal correlation ratio and the defocus correlation ratio. Next, a weighted variation is determined from the peak variation and the correlation variation. An illumination source of a lowest weighted variation among a plurality of the illumination sources is determined to be an illumination source with optimized depth of focus.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: April 15, 2014
    Assignee: Nanya Technology Corp.
    Inventor: Chun-Wei Wu
  • Patent number: 8698235
    Abstract: A slit recess channel gate is provided. The slit recess channel gate includes a substrate, a gate dielectric layer, a first conductive layer and a second conductive layer. The substrate has a first trench. The gate dielectric layer is disposed on a surface of the first trench and the first conductive layer is embedded in the first trench. The second conductive layer is disposed on the first conductive layer and aligned with the first conductive layer above the main surface, wherein a bottom surface area of the second conductive layer is substantially smaller than a top surface area of the second conductive layer.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: April 15, 2014
    Assignee: Nanya Technology Corp.
    Inventors: Tieh-Chiang Wu, Yi-Nan Chen, Hsien-Wen Liu
  • Patent number: 8691477
    Abstract: A reticle for lens heating mitigation includes a substrate, a target pattern and a redistributive pattern. The substrate includes a live pattern region and the target pattern is disposed within the live pattern region for constructing the target pattern onto a wafer. The redistributive pattern is also disposed within the live pattern region for redistributing energy onto a lens without being printed onto the wafer and without correcting said target pattern to be printed onto the wafer.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: April 8, 2014
    Assignee: Nanya Technology Corp.
    Inventors: Jianming Zhou, Anton Devilliers, Erik Byers
  • Patent number: 8691680
    Abstract: A method for fabricating a memory array includes providing a semiconductor substrate having thereon a plurality of line-shaped active areas and intermittent line-shaped trench isolation regions between the plurality of line-shaped active areas, which extend along a first direction; forming buried word lines extending along a second direction in the semiconductor substrate, the buried word lines intersecting with the line-shaped active areas and the intermittent line-shaped trench isolation regions, wherein the second direction is not perpendicular to the first direction; forming buried digit lines extending along a third direction in the semiconductor substrate, wherein the third direction is substantially perpendicular to the second direction; and forming storage nodes at storage node sites between the buried digit lines.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: April 8, 2014
    Assignee: Nanya Technology Corp.
    Inventor: Kuo-Chen Wang
  • Patent number: 8692245
    Abstract: The present invention in a first aspect proposes a semiconductor structure with a crack stop structure. The semiconductor structure includes a matrix, an integrated circuit and a scribe line. The matrix includes a scribe line region and a circuit region. The integrated circuit is disposed within the circuit region. The scribe line is disposed within the scribe line region and includes a crack stop trench which is disposed in the matrix and adjacent to the circuit region. The crack stop trench is parallel with one side of the circuit region and filled with a composite material in the form of a grid to form a crack stop structure.
    Type: Grant
    Filed: August 21, 2011
    Date of Patent: April 8, 2014
    Assignee: Nanya Technology Corp.
    Inventors: Tse-Yao Huang, Yi-Nan Chen, Hsien-Wen Liu
  • Patent number: 8692318
    Abstract: A trench MOS structure is provided. The trench MOS structure includes a substrate, an epitaxial layer, a trench, a gate isolation, a trench gate, a guard ring and a reinforcement structure within the guard ring. The substrate has a first conductivity type, a first side and a second side opposite to the first side. The epitaxial layer has the first conductivity type and is disposed on the first side. The trench is disposed in the epitaxial layer. The gate isolation covers the inner wall of the trench. The trench gate is disposed in the trench and has the first conductivity type. The guard ring has a second conductivity type and is disposed within the epitaxial layer. The reinforcement structure has an electrically insulating material and is disposed within the guard ring.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: April 8, 2014
    Assignee: Nanya Technology Corp.
    Inventors: Chin-Te Kuo, Yi-Nan Chen, Hsien-Wen Liu
  • Patent number: 8674522
    Abstract: The present invention provides a castle-like shaped protect or a periphery protect or a DC chop mask for forming staggered data line patterns in semiconductor devices so as to shift the adjacent data lines from one another so as to print contacts with larger areas at one end of each data line.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: March 18, 2014
    Assignee: Nanya Technology Corp.
    Inventors: David Pratt, Richard Housley
  • Patent number: 8664077
    Abstract: A method for forming a self-aligned overlay mark is disclosed. First, a first region, a second region and a main feature which is disposed between the first region and the second region all disposed on the substrate are provided. The first region defines a first edge and the second region defines a second edge. Second, a cut mask layer is formed to respectively cover the first region and the second region to expose the main feature. Next, the cut mask layer is determined if it is self-aligned with the second edge or the first edge, and creates a self-aligned overlay mark. Later, a main feature etching step is carried out to transfer the main feature into the substrate when the cut mask layer is determined to be self-aligned with the second edge or the first edge.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: March 4, 2014
    Assignee: Nanya Technology Corp.
    Inventors: Vinay Nair, David Pratt, Christopher Hawk, Richard Housley
  • Patent number: 8664992
    Abstract: A duty cycle controlling circuit for adjusting duty cycle of a target clock signal to a desired value, comprises: a first duty cycle adjusting cell, for receiving a first duty cycle control signal to adjust duty cycle of an input clock signal to generate a first output clock signal as the target clock signal; and a duty cycle detecting module, for generating the first duty cycle control signal according to the first output clock signal.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: March 4, 2014
    Assignee: Nanya Technology Corp.
    Inventor: Yantao Ma
  • Patent number: 8662963
    Abstract: A chemical mechanical polishing (CMP) system includes a wafer polishing unit producing a used slurry; a slurry treatment system for receiving and treating the used slurry to thereby produce an extracted basic solution; and a post-CMP cleaning unit utilizing the extracted basic solution to wash a polished wafer surface. The post-CMP cleaning unit includes a plurality of rollers for supporting and rotating a wafer, a brush for scrubbing the wafer, and a spray bar disposed in proximity to the brush for spraying the extracted basic solution onto the polished wafer surface.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: March 4, 2014
    Assignee: Nanya Technology Corp.
    Inventors: Li-Chung Liu, Yi-Nan Chen, Hsien-Wen Liu
  • Publication number: 20140054643
    Abstract: The invention discloses an ESD protection circuit, including a P-type substrate; an N-well formed on the P-type substrate; a P-doped region formed on the N-well, wherein the P-doped region is electrically connected to an input/output terminal of a circuit under protection; a first N-doped region formed on the P-type substrate, the first N-doped region is electrically connected to a first node, and the P-doped region, the N-well, the P-type substrate, and the first N-doped region constitute a silicon controlled rectifier; and a second N-doped region formed on the N-well and electrically connected to a second node, wherein a part of the P-doped region and the second N-doped region constitute a discharging path, and when an ESD event occurs at the input/output terminal, the silicon controlled rectifier and the discharging path bypass electrostatic charges to the first and second nodes respectively.
    Type: Application
    Filed: November 1, 2013
    Publication date: February 27, 2014
    Applicant: Nanya Technology Corp.
    Inventor: Wei-Fan Chen
  • Patent number: 8658051
    Abstract: A method of improving lithography resolution on a semiconductor, including the steps of providing a substrate on which a protecting layer, a first etching layer and a photoresist layer are sequentially formed; patterning the photoresist layer to form an opening so as to partially reveal the first etching layer; implanting a first ion into the revealed first etching layer to form a first doped area; and implanting a second ion into the revealed first etching layer to form a second doped area, wherein the first doped area is independent from the second doped area is provided.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: February 25, 2014
    Assignee: Nanya Technology Corp.
    Inventors: Kuo-Yao Cho, Wen-Bin Wu, Ya-Chih Wang, Chiang-Lin Shih, Chao-Wen Lay, Chih-Huang Wu
  • Patent number: 8653584
    Abstract: A dual vertical channel transistor includes a tuning fork-shaped substrate body; a buried bit line embedded at a bottom of a recess between two prong portions of the tuning fork-shaped substrate body; an out-diffused drain region adjacent to the buried bit line in the tuning fork-shaped substrate body; a source region situated at a top portion of each of the two prong portions of the tuning fork-shaped substrate body; an epitaxial portion connecting the two prong portions of the tuning fork-shaped substrate body between the out-diffused drain region and the source region; a front gate situated on a first side surface of the tuning fork-shaped substrate body; and a back gate situated on a second side surface opposite to the first side surface of the tuning fork-shaped substrate body.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: February 18, 2014
    Assignee: Nanya Technology Corp.
    Inventor: Shing-Hwa Renn
  • Publication number: 20140038414
    Abstract: A blanket stop layer is conformally formed on a layer with a large step height. A first chemical mechanical polishing process is performed to remove the blanket stop layer atop the layer in the raised region. A second chemical mechanical polishing process is performed to planarize the wafer using the blanket stop layer as a stop layer when the layer is lower than or at a same level as the blanket stop layer or using the layer as a stop layer when the blanket stop layer is lower than or at a same level as the layer, or a selective dry etch is performed to remove the layer in the raised region. Thus, the layer in the raised region can be easily removed without occurrence of dishing in the non-raised region which is protected by the blanket stop layer.
    Type: Application
    Filed: October 9, 2013
    Publication date: February 6, 2014
    Applicant: NANYA TECHNOLOGY CORP.
    Inventors: BRETT BUSCH, GOWRI DAMARLA, ANURAG JINDAL, Chia-Yen Ho, THY TRAN
  • Patent number: 8629483
    Abstract: A method for forming a DRAM memory with a two-sided transistor includes: providing a silicon finFET structure having at least two fins, and a trench between the fins; forming high ohmic gates on either side of the fins; forming a hole between each pair of high ohmic gates to enable connection between the pair of high ohmic gates; forming a gate on one side of the trench and underneath one of the pair of high ohmic gate; forming a layer of oxide over the gate; and depositing tungsten in the trench to form a thick layer of metal at the bottom to form a word line.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: January 14, 2014
    Assignee: Nanya Technology Corp.
    Inventor: Werner Juengling
  • Patent number: 8624645
    Abstract: A multi-phase clock signal generator, comprising: a ring phase shifting loop, including a plurality of controllable delay cells, for generating output clock signals having different phases via the controllable delay cells according to a input clock signal, wherein delay amount of the controllable delay cells are determined by a biasing voltage; a phase skew detecting circuit, for computing phase differences of the output clock signals to generate a phase skew detecting signal; and a biasing circuit, for providing the biasing voltage according to the phase skew detecting signal. The above-mentioned ring phase shifting loop can operate independently from the multi-phase clock signal generator, without receiving the biasing voltage, for phase-shifting a input clock signal to generate output clock signals with different phases, wherein the output clock signals are respectively output at different output terminals respectively located between the phase shifting units.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: January 7, 2014
    Assignee: Nanya Technology Corp.
    Inventor: Yantao Ma
  • Patent number: 8625078
    Abstract: A method for reducing the effects of lens heating of a lens in an imaging process includes determining heat load locations on the lens according to an illumination source and a reticle design, obtaining a lens response characterization according to the heat load locations, and utilizing the heat load locations and the lens response characterization to generate a lens heating sensitivity map.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: January 7, 2014
    Assignee: Nanya Technology Corp.
    Inventors: Jianming Zhou, Scott Light, Dan Millward, Yuan He, Kaveri Jain, Lijing Gou, Zishu Zhang, Anton DeVilliers, Michael Hyatt