Abstract: In an embodiment a light-emitting component includes a housing and an edge emitting semiconductor laser arranged in the housing, wherein the semiconductor laser is configured to emit light at a side face in an angle range, wherein the housing includes an emission opening for emitting the light, wherein the semiconductor laser is arranged in a first layer having a first material, wherein a second layer is arranged on the first layer, the second layer having a second material, wherein the first layer and the second layer are transmissive to the light, wherein the second layer is arranged between the first layer and the emission opening, wherein the emission opening lies at least partly outside the angle range of the semiconductor laser, and wherein a part of the light is directed directly onto an interface between the first and second layers.
Type:
Grant
Filed:
April 12, 2017
Date of Patent:
June 7, 2022
Assignee:
OSRAM OLED GMBH
Inventors:
Hubert Halbritter, Roland Enzmann, Andreas Wojcik
Abstract: In an embodiment a conversion element includes a grid having a plurality of openings, a plurality of conversion segments configured to convert a part of a primary radiation into a secondary radiation, wherein the conversion segments are arranged in the openings, wherein the conversion segments include a matrix material into which fluorescent particles are incorporated, wherein the fluorescent particles are sedimented in a sedimented layer and a semiconductor material, a plastic or a metal, wherein the grid terminates flush with the conversion segments.
Type:
Grant
Filed:
April 30, 2019
Date of Patent:
May 31, 2022
Assignee:
OSRAM OLED GMBH
Inventors:
Daniel Leisen, Hansjörg Schöll, Harald Jäger
Abstract: A method of embedding opto-electronic components in a layer, wherein the components are disposed beside one another to be spaced apart on a carrier, including providing a molding tool having a bearing plate, wherein the bearing plate on a lower side includes resilient bearing regions, bringing the bearing plate by way of the resilient bearing regions to bear on upper sides of the components, filling an intermediate space between the components, the carrier, and the bearing plate with a molding material, curing the molding material to form the layer, and removing the molding tool from the layer and the embedded components.
Abstract: An optoelectronic semiconductor component and a method for producing an optoelectronic semiconductor component are disclosed. In an embodiment an optoelectronic semiconductor component includes a semiconductor layer sequence having a first region of a first conductivity type, a reflection layer, a passivation layer arranged between the semiconductor layer sequence and the reflection layer, a first barrier layer arranged between the first region of the semiconductor layer sequence and the passivation layer and a second barrier layer arranged between the passivation layer and the reflection layer, wherein the first barrier layer is configured to reduce or prevent diffusion of contaminants from the passivation layer into the semiconductor layer sequence, and wherein the second barrier layer is configured to reduce or prevent diffusion of contaminants from the passivation layer into the reflection layer.
Abstract: A light-emitting component is disclosed. In an embodiment a light-emitting component includes at least four light sources configured to emit light of different wavelength ranges in pairs and a control device configured to operate the light sources independently of one another in such a way that light from at least two of the light sources is mixed to form a mixed light and adjust an mv,mel,D65 value of the mixed light, wherein the at least four light sources include a first light source configured to emit electromagnetic radiation with a dominant wavelength of at most 450 nm, a second light source configured to emit electromagnetic radiation with a dominant wavelength of at least 480 nm and at most 520 nm or a dominant wavelength of at least 455 nm and at most 470 nm, a third light source configured to emit electromagnetic radiation in a spectral range of green light, and a fourth light source configured to emit electromagnetic radiation in a spectral range of yellow and/or amber light.
Type:
Grant
Filed:
July 11, 2018
Date of Patent:
May 17, 2022
Assignee:
OSRAM OLED GMBH
Inventors:
Sebastian Stigler, Uli Hiller, Martin Moritz
Abstract: A semiconductor laser diode is specified, the semiconductor laser diode includes a semiconductor layer sequence having an active layer which has a main extension plane and which, in operation, is adapted to generate light in an active region and to emit light via a light-outcoupling surface, the active region extending from a rear surface opposite the light-outcoupling surface to the light-outcoupling surface along a longitudinal direction in the main extension plane, the semiconductor layer sequence having a surface region on which a first cladding layer is applied in direct contact, the first cladding layer having a transparent material from a material system different from the semiconductor layer sequence, and the first cladding layer being structured and having a first structure.
Type:
Grant
Filed:
June 8, 2018
Date of Patent:
May 17, 2022
Assignee:
OSRAM OLED GmbH
Inventors:
Sven Gerhard, Christoph Eichler, Alfred Lell, Bernhard Stojetz
Abstract: A luminophore may have the general empirical formula X3A7Z3O11:E, where: X=Mg, Ca, Sr, Ba, and/or Zn; A=Li, Na, K, Rb, Cs, Cu, and/or Ag; Z=Al, Ga, and/or B; and E=Eu, Ce, Yb, and/or Mn.
Type:
Grant
Filed:
June 5, 2019
Date of Patent:
May 10, 2022
Assignee:
OSRAM OLED GmbH
Inventors:
Daniel Bichler, Thorsten Schroeder, Gina Maya Achrainer, Christian Koch, Simon Dallmeir
Abstract: An optoelectronic semiconductor chip, a method for manufacturing an optoelectronic component and an optoelectronic component are disclosed. In an embodiment an optoelectronic semiconductor chip includes a semiconductor layer sequence having an emission side, the emission side comprising a plurality of emission fields, partition walls on the emission side in a region between two adjacent emission fields and a conversion element on one or more emission fields, wherein the conversion element includes a matrix material with first phosphor particles incorporated therein, wherein the first phosphor particles are sedimented in the matrix material such that a mass fraction of the first phosphor particles is greater in a lower region of the conversion element facing the semiconductor layer sequence than in a remaining region of the conversion element, and wherein the partition walls are attached to the emission side without any additional connectors.
Type:
Grant
Filed:
January 24, 2019
Date of Patent:
May 10, 2022
Assignee:
OSRAM OLED GMBH
Inventors:
Britta Göötz, Matthias Hien, Andreas Dobner, Peter Brick, Matthias Goldbach, Uli Hiller, Sebastian Stigler
Abstract: The optoelectronic device including a radiation emitting semiconductor chip emitting electromagnetic radiation of a first wavelength range from a radiation exit surface, and a conversion element converting electromagnetic radiation of the first wavelength range into electromagnetic radiation of a second wavelength range at least partially and emitting electromagnetic radiation from a light coupling-out surface, wherein the light coupling-out surface of the conversion element is smaller than the radiation exit surface of the semiconductor chip.
Type:
Grant
Filed:
April 30, 2019
Date of Patent:
May 3, 2022
Assignee:
OSRAM OLED GmbH
Inventors:
Martin Brandl, Alexander Baumgartner, Ion Stoll
Abstract: Optoelectronic components may include a semiconductor layer sequence on an auxiliary carrier where the sequence includes at least one n-doped layer, at least one p-doped layer, and an active layer therebetween. A first insulation layer is arranged over a surface of the n-doped layer. A first and second metallization are arranged for contacting the p-doped and n-doped layers, and the metallizations are connected to each other. The first and second metallizations are spatially separated from one another. A second insulation layer electrically insulates the first and second metallizations.
Type:
Grant
Filed:
July 5, 2018
Date of Patent:
May 3, 2022
Assignee:
OSRAM OLED GmbH
Inventors:
Thomas Oszinda, Attila Molnar, Fabian Kopp
Abstract: A radiation-emitting device includes a semiconductor layer sequence having an active layer that emits a primary radiation during operation, a decoupling surface on a surface of the semiconductor layer sequence, a wavelength conversion layer on a side of the semiconductor layer sequence facing away from the decoupling surface, containing at least one conversion material that converts the primary radiation into secondary radiation, and a mirror layer on the side of the wavelength conversion layer facing away from the semiconductor layer sequence, wherein the at least one conversion material is electrically conductive and/or embedded in an electrically conductive matrix material.
Abstract: An optoelectronic semiconductor chip and a method for producing an optoelectronic semiconductor chip are disclosed. In an embodiment, a chip includes a semiconductor body comprising a plurality of emission regions, first and second contact points, a rewiring structure and first and second connection points, wherein each emission region is contacted via the first and second contact points and configured to be operated separately from one another, wherein the rewiring structure electrically conductively connects each first contact point to an associated first connection point, wherein the rewiring structure electrically conductively connects every second contact point to an associated second connection point, wherein at least one of the connection points does not overlap with a contact point which is electrically conductively connected to this connection point in a vertical direction, and wherein each first connection point is disposed laterally directly adjacent to a further first connection point.
Abstract: In one embodiment, the optoelectronic semiconductor component (1) comprises a semiconductor chip (2) for generating radiation and an inorganic housing (3). The semiconductor chip (2) is accommodated in a hermetically sealed manner in the housing (3). The housing (3) has a preferably ceramic base plate (31), a cover plate (33) and at least one preferably ceramic housing ring (32) and a plurality of electrical through-connections (51). A recess (15), in which the semiconductor chip (2) is located, is formed by the housing ring (32). The base plate (31) has a plurality of electrical connection surfaces (35) on a component underside (11). A plurality of through-connections (51) each extend through the base plate (31), through the cover plate (33) and through the housing ring (32). The base plate (31), the at least one housing ring (32) and the cover plate (33) are firmly connected to one another via continuous, peripheral inorganic sealing frames (6).
Type:
Grant
Filed:
October 8, 2018
Date of Patent:
April 26, 2022
Assignee:
OSRAM OLED GMBH
Inventors:
Jörg Erich Sorg, Christoph Koller, Andreas Dobner
Abstract: A semiconductor body is disclosed. In an embodiment a semiconductor body includes an n-doped region comprising a first layer sequence comprising pairs of alternating layers, wherein a first layer and a second layer of each pair differ in their doping concentration, and wherein the first and second layers of each pair have the same material composition except for their doping and a second layer sequence comprising pairs of alternating layers, wherein a first layer and a second layer of each pair differ in their material composition, an active region, wherein the second layer sequence is disposed between the first layer sequence and the active region and a p-doped region, wherein the active region is disposed between the n-doped region and the p-doped region.
Abstract: A radiation-emitting semiconductor device (1) is specified, comprising a semiconductor body (2) having an active region (20) provided for generating radiation, a carrier (3) on which the semiconductor body is arranged and an optical element (4), wherein the optical element is attached to the semiconductor body by a direct bonding connection. Furthermore, a method for producing of radiation-emitting semiconductor devices is specified.
Type:
Grant
Filed:
September 20, 2018
Date of Patent:
April 26, 2022
Assignee:
OSRAM OLED GMBH
Inventors:
Roland Heinrich Enzmann, Hubert Halbritter, Martin Rudolf Behringer
Abstract: A method for fastening a semiconductor chip on a substrate and an electronic component are disclosed. In an embodiment a method includes providing a semiconductor chip, applying a solder metal layer sequence on the semiconductor chip, providing a substrate, applying a metallization layer sequence on the substrate, applying the semiconductor chip on the substrate via the solder metal layer sequence and the metallization layer sequence and heating the applied semiconductor chip on the substrate for fastening the semiconductor chip on the substrate. The solder metal layer may include a first metallic layer comprising an indium-tin alloy, a barrier layer arranged above the first metallic layer and a second metallic layer comprising gold arranged between the barrier layer and the semiconductor chip, wherein an amount of substance of the gold in the second metallic layer is greater than an amount of substance of tin in the first metallic layer.
Type:
Grant
Filed:
June 6, 2018
Date of Patent:
April 26, 2022
Assignee:
OSRAM OLED GMBH
Inventors:
Klaus Mueller, Andreas Ploessl, Mathias Wendt
Abstract: An optoelectronic semiconductor device and a method for manufacturing an optoelectronic semiconductor device are disclosed. In an embodiment, an optoelectronic semiconductor device includes a semiconductor body having an active region configured to generate electromagnetic radiation and a coupling-out surface along a main radiation direction, and a wavelength conversion element having conversion regions, the conversion regions optically separated from one another by metallic separators, wherein the wavelength conversion element is arranged downstream of the semiconductor body in the main radiation direction of the active region, wherein the active region comprises a plurality of independently controllable emission regions, and wherein the emission regions are at least partially aligned with the conversion regions and explicitly assigned to the conversion regions.
Abstract: An optoelectronic semiconductor device includes a semiconductor layer sequence including an active zone that generates radiation by electroluminescence; a p-electrode and an n-electrode; an electrically insulating passivation layer on side surfaces of the semiconductor layer sequence; and an edge field generating device on the side surfaces on a side of the passivation layer facing away from the semiconductor layer sequence at the active zone, wherein the edge field generating device is configured to generate an electric field at least temporarily in an edge region of the active zone so that, during operation, a current flow through the semiconductor layer sequence is controllable in the edge region.
Type:
Grant
Filed:
April 16, 2018
Date of Patent:
April 19, 2022
Assignee:
OSRAM OLED GmbH
Inventors:
Clemens Vierheilig, Philipp Kreuter, Rainer Hartmann, Michael Binder, Tobias Meyer
Abstract: A radiation-emitting semiconductor device and a fabric are disclosed. In an embodiment, a radiation-emitting semiconductor device includes a semiconductor layer sequence having an active region configured to generate radiation and at least one carrier on which the semiconductor layer sequence is arranged, wherein the at least one carrier has at least one anchoring structure on a carrier underside facing away from the semiconductor layer sequence, wherein the at least one anchoring structure includes electrical contact points for making electrical contact with the semiconductor layer sequence, and wherein the at least one anchoring structure is configured to receive at least one thread for fastening the semiconductor device to a fabric and for electrical contacting the at least one thread.
Type:
Grant
Filed:
April 18, 2018
Date of Patent:
April 5, 2022
Assignee:
OSRAM OLED GMBH
Inventors:
Martin Rudolf Behringer, Alexander F. Pfeuffer, Andreas Plößl, Georg Bogner, Berthold Hahn, Frank Singer