Patents Assigned to Oxford University
  • Patent number: 11860378
    Abstract: A device (100) for speckle reduction, comprising an optical cell (110) and a controller (130). The optical cell (110) comprises a first and second cell wall (121, 122) spaced apart by a gap, and a liquid crystal composition (114) in the gap. The controller (130) is configured to cause fluid turbulence in the liquid crystal composition. The fluid turbulence in the liquid crystal composition (114) results in time varying spatially random scattering of light (102) transmitted through the liquid crystal composition (114). The liquid crystal composition (114) has a chiral nematic phase.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: January 2, 2024
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: David J. Hansford, Julian A. J. Fells, Steve Elston, Stephen M. Morris
  • Patent number: 11860119
    Abstract: A sensing method is described. The sensing method comprises providing a time-dependent electrical signal across a conductive connection between first and second terminals of a sensor, the conductive connection capacitively coupled to an environment via a mesoscopic probe element having an electroactive surface for exposure to the environment, the conductive connection having an associated relaxation time. The method further comprises receiving a time-dependent response signal from the sensor. The method further comprises analysing the time-dependent response signal with respect to the time-dependent electrical signal. The method further comprises determining, based on the analysis, a change in the relaxation time, the change in the relaxation time being correlated with an interaction between the electroactive surface and a measurand of the environment. A computer-readable medium, a sensing system and a sensor are also described.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: January 2, 2024
    Assignees: OXFORD UNIVERSITY INNOVATION LIMITED, UNIVERSIDADE ESTADUAL PAULISTA “JULIO DE MESQUITA FILHO”—UNESP
    Inventors: Jason J. Davis, Paulo R. Bueno
  • Patent number: 11857640
    Abstract: Recombinant adenoviral vectors, immunogenic compositions thereof and their use in medicine, and methods for generating recombinant adenoviral vectors are provided. In particular, the an adenovirus vector having a capsid derived from chimpanzee adenovirus AdY25, wherein the capsid encapsidates a nucleic acid molecule comprising an exogeneous nucleotide sequence of interest are provided.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: January 2, 2024
    Assignee: Oxford University Innovation Limited
    Inventors: Matthew Douglas James Dicks, Matthew Guy Cottingham, Adrian Vivian Sinton Hill, Sarah Gilbert
  • Patent number: 11859267
    Abstract: A nickel-based alloy composition consisting, in weight percent, of: between 4.0% and 6.9% aluminium, between 0.0% and 23.4% cobalt, between 9.1% and 11.9% chromium, between 0.1% and 4.0% molybdenum, between 0.6% and 3.7% niobium, between 0.0 and 1.0% tantalum, between 0.0% and 3.0% titanium, between 0.0% and 10.9% tungsten, between 0.02 wt. % and 0.35 wt. % carbon, between 0.001 and 0.2 wt. % boron, between 0.001 wt. % and 0.5 wt. %. zirconium, between 0.0 and 0.5% silicon, between 0.0 and 0.1% yttrium, between 0.0 and 0.1% lanthanum, between 0.0 and 0.1% cerium, between 0.0 and 0.003% sulphur, between 0.0 and 0.25% manganese, between 0.0 and 0.5% copper, between 0.0 and 0.5% hafnium, between 0.0 and 0.5% vanadium, between 0.0 and 10.0% iron, the balance being nickel and incidental impurities.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: January 2, 2024
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Roger Reed, David Crudden
  • Patent number: 11834697
    Abstract: A method of determining the presence of bacteria expressing cytochrome c oxidase (‘the bacteria’), the method comprising: —providing a sample suspected of containing the bacteria; —providing a compound that has two redox states: a reduced state and an oxidised state, wherein cytochrome c oxidase can convert the compound from its reduced state to its oxidised state; —contacting an electrode either with (i) the compound in its oxidised state in the presence of the sample, then applying a reductive potential and measuring the current at the electrode; or (ii) the compound in its reduced state in the presence of the sample, then applying an oxidative potential and measuring the current at the electrode; and—comparing the magnitude of the current produced by the reductive potential or oxidative potential in the presence of the sample suspected of containing the bacteria with the magnitude of the current produced under the same conditions, but in the absence of the sample suspected of containing the bacteria, where
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: December 5, 2023
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Richard Guy Compton, Sabine Kuss
  • Patent number: 11820670
    Abstract: The present invention relates to a semiconductor device comprising a semiconducting material, wherein the semiconducting material comprises a compound comprising: (i) one or more first monocations [A]; (ii) one or more second monocations [BI]; (iii) one or more trications [BIII]; and (iv) one or more halide anions [X]. The invention also relates to a process for producing a semiconductor device comprising said semiconducting material. Also described is a compound comprising: (i) one or more first monocations [A]; (ii) one or more second monocations [BI] selected from Cu+, Ag+ and Au+; (iii) one or more trications [BIII]; and (iv) one or more halide anions [X].
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: November 21, 2023
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Henry James Snaith, Amir Abbas Hagighirad, Feliciano Giustino, Marina Filip, George Volonakis
  • Patent number: 11820927
    Abstract: The present invention relates to a method for preparing a stabilised crystalline A/M/X material comprising an oxide of formula [Z]pOq and a compound of formula [A]a[M]b[X]c, wherein [Z] comprises at least one element Z capable of forming an oxide with a band gap of at least 3 eV; p and q are positive numbers; [A] comprises one or more A cations; [M] comprises one or more M cations; [X] comprises one or more X anions; a is an integer from 1 to 6; b is an integer from 1 to 6; and c is an integer from 1 to 18. Often, the stabilised crystalline A/M/X material is a perovskite. The invention also provides a stabilised crystalline A/M/X material, which can be produced by the process of the invention. The invention further provides materials and devices containing the stabilised crystalline A/M/X material of the invention.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: November 21, 2023
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Nobuya Sakai, Bernard Abbas Wenger, Henry James Snaith
  • Publication number: 20230359009
    Abstract: An interferometric scattering microscope is adapted by performing spatial filtering of output light, which comprises both light scattered from a sample location and illuminating light reflected from the sample location, prior to detection of the output light. The spatial filtering passes the reflected illumination light but with a reduction in intensity that is greater within a predetermined numerical aperture than at larger numerical apertures. This enhances the imaging contrast for coherent illumination, particularly for objects that are weak scatterers.
    Type: Application
    Filed: May 8, 2023
    Publication date: November 9, 2023
    Applicant: Oxford University Innovation Limited
    Inventors: Philipp KUKURA, Alexander WEIGEL, Justin BENESCH
  • Patent number: 11802926
    Abstract: The present disclosure is directed to radially-based magnetic resonance imaging. In any one or more embodiments, the present methods and systems provide that the angular increment between subsequent radial k-space spokes to be sampled to provide the imaging is performed for a predetermined or pre-defined restricted set of reconstruction window sizes (numbers of radial spokes per frame), or limited views, to maximize the uniformity of sampling within the restricted set of window sizes.
    Type: Grant
    Filed: November 11, 2021
    Date of Patent: October 31, 2023
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Sonja Sophie Schauman, Mark Chiew, Thomas Okell
  • Patent number: 11799039
    Abstract: The present invention relates to devices comprising metal halide perovskites and organic passivating agents. In particular, the invention relates to photovoltaic and optoelectronic devices comprising passivated metal halide perovskites. The device according to the invention comprises: (a) a metal halide perovskite; and (b) a passivating agent which is an organic compound; wherein molecules of the passivating agent are chemically bonded to anions or cations in the metal halide perovskite.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: October 24, 2023
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Henry J. Snaith, Antonio Abate, Nakita K. Noel
  • Patent number: 11796619
    Abstract: Methods of assessing or obtaining an indication of the presence of a cognitive disorder by analysing microstructural changes in regions of the brain are provided. The invention particularly relates to methods of assessing or obtaining an indication of the presence of types of dementia, for example Alzheimer's disease, by analysing changes in minicolumns in regions or layers of the cortex of the brain or of the whole brain.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: October 24, 2023
    Assignee: Oxford University Innovation Limited
    Inventors: Steven Chance, Rebecca McKavanagh, Mark Jenkinson, Karla Miller
  • Patent number: 11788843
    Abstract: A computer-implemented method of determining a location of a mobile device is provided. The method can include receiving inertial data generated at the mobile device, the inertial data including a plurality of samples taken at different times, segmenting the inertial data into pseudo-independent windows, wherein each pseudo-independent window can include a plurality of the samples and wherein one or more initial states for each pseudo-independent window are treated as unknown, estimating a change in navigation state over each pseudo-independent window using the samples of inertial data, and summing the changes in the navigation states over the pseudo-independent windows so as to determine the location of the mobile device.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: October 17, 2023
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Changhao Chen, Ronald Clark, Andrew Markham, Agathoniki Trigoni
  • Patent number: 11790034
    Abstract: A system for tracking selected wave parameters from a received sinusoidal wave with noise and methods for making and using the same. The method includes performing a multi-track double integral analysis of the sinusoidal wave with noise and creating time dependent outputs. These time dependent outputs may be analyzed mathematically to determine the amplitude, frequency and/or phase of the wave with reduced noise. In one embodiment, the method may employ multiple passes through double integral analysis. The method advantageously can measure output sinusoidal wave parameters with reduced noise, measurements that are close to theoretical noise reduction limits.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: October 17, 2023
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventor: Manus Patrick Henry
  • Publication number: 20230279419
    Abstract: Vascular sheath tissue-specific expression of phytochrome B or variants thereof in C3 plants increases photosynthesis rate and/or introduces a carbon refixation mechanism. The heritable genetic material of a C3 plant cell is altered such that one copy of phytochrome B, or active variant or functional fragment thereof is expressed specifically in vascular sheath cells. Whole plants are regenerated from these genetically altered plant cells. Alternatively, a Crispr modification of a native phytochrome locus in a plant cell is used to insert a vascular sheath-specific regulatory element, e.g. promoter or enhancer element, so that phytochrome B is expressed in vascular sheath cells of a regenerated whole plant. Genetically altered whole plants have increased yield-related traits, e.g. increased seed yield, resulting from the enhancement of photosynthesis and/or introduction of a carbon refixation mechanism.
    Type: Application
    Filed: May 18, 2021
    Publication date: September 7, 2023
    Applicant: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Ross HENDRON, Enrique LOPEZ-JUEZ, Steven KELLY
  • Patent number: 11747426
    Abstract: A validation technique for quality assurance of quantitative MRI methods by comparing the measured magnetic properties of a phantom having a range of T1 and T2 values measured by an accelerated, clinically-practicable protocol with predicted values for that magnetic property calculated from a set of reference T1 and T2 values measured on the phantom. The prediction is based on a relationship between the values from the accelerated protocol and values from the reference measurements obtained by repeatedly scanning one or more phantoms.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: September 5, 2023
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Qiang Zhang, Stefan Piechnik, Konrad Werys, Iulia Andreia Popescu, Vanessa Ferreira
  • Patent number: 11744877
    Abstract: The present invention provides a tumour vasculature permeabilising molecule for use in permeabilising vasculature of a tumour for treating, detecting or diagnosing said tumour wherein said tumour vasculature permeabilising molecule is formulated for systemic administration to said patient. A composition comprising a tumour vasculature permeabilising molecule and an appropriate anticancer agent or imaging agent, and a method of treatment or a method of detecting the presence or absence of a tumour are also provided.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: September 5, 2023
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Daniel Anthony, Nicola Sibson, Len Seymour, Kerry Fisher
  • Patent number: 11733106
    Abstract: The present invention relates to a sensor for measuring temperature of a fluid within a vessel, the vessel having a first region and a second region and the fluid having a temperature profile extending between the first region and the second region, the sensor comprising an array of elements, each element having a temperature-dependent parameter, the array being capable of deployment within or adjacent the vessel such that the array extends along the vessel for measuring the temperature profile, the elements of the array being coupled together between an input and an output, the input being coupled or capable of being coupled to a driving source for driving the sensors, and the output being coupled or capable of being coupled to a detector for measuring an aggregate of the temperature-dependent parameter from the array of elements.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: August 22, 2023
    Assignee: Oxford University Innovation Limited
    Inventors: Malcolm Duncan McCulloch, Peter Michael Armstrong
  • Patent number: 11725238
    Abstract: The invention relates to a method for detection of analyte interaction with a channel molecule held in a membrane, comprising the optical detection of a modification in the flux of a signal molecule as it passes through the channel molecule by the action of a membrane potential, wherein the modification in the flux is caused by at least partial blockage of the channel molecule by the analyte. The invention further relates to bilayer arrays, components, methods of manufacture and use.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: August 15, 2023
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Mark Wallace, Hagan Bayley, Shuo Huang, Oliver Kieran Castell, Mercedes Romero-Ruiz
  • Patent number: 11728075
    Abstract: A magnetic micro-particle (201) comprising one or more magnetic nano-wires (202).
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: August 15, 2023
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Sonia Contera Antoranz, Ileana Andrea Bonilla Brunner
  • Patent number: 11724999
    Abstract: The present invention relates to compounds of Formula I as defined herein, and salts and solvates thereof. (I) The present invention also relates to pharmaceutical compositions comprising compounds of Formula (I), and to compounds of Formula (I) for use in the treatment of proliferative disorders, such as cancer, as well as other diseases or conditions in which inhibition of a RAS-effector protein-protein interaction is implicated.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: August 15, 2023
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Terrence Rabbitts, Camilo Quevedo, Abimael Cruz, Simon Phillips, Philip Spencer Fallon, Anna Hopkins, Lydia Yuen-Wah Lee, Tenin Traore, Sophie Caroline Williams, Natalie Louise Winfield