Patents Assigned to Particle Measuring Systems, Inc.
-
Patent number: 7088446Abstract: An opaque slurry chemical constituent measurement system includes a cross-flow or membrane filter having a porous filter element connected between a global slurry loop and a spectrometer. The opaque slurry particles cannot pass through the filter element but pass through the filter cartridge into the day tank, while the chemical constituent to be measured permeates through the filter element to the spectrometer, where it is measured, and thence to a reservoir. About once every five minutes the porous filter element is reverse flushed for less than a second to clear the filter pores. One to several times per hour, the reservoir is emptied into the day tank. The system provides essentially continuous measurement of the slurry chemical composition, does not consume reagent chemicals, does not create a chemical waste stream, and provides high reliability and low maintenance by preventing the abrasive slurry particles from contacting the fluidic sampling valves.Type: GrantFiled: December 31, 2003Date of Patent: August 8, 2006Assignee: Particle Measuring Systems, Inc.Inventor: Todd A. Cerni
-
Patent number: 7088447Abstract: A particle measurement system using a single component light collecting system with an aperture having a portion within direct view of the light detector. An aperture assembly extending into a sample may be self-concealing by having an extended portion to block light from directly illuminating the light detector. Alternatively, a smooth, reflective inside surface of the aperture assembly provides for self-concealment by causing spontaneous emitted light to have low angles of reflection. In either case, spontaneously emitted light is substantially prevented from reflecting directly into the light detector, thereby reducing light noise to the level of molecular noise.Type: GrantFiled: May 31, 2005Date of Patent: August 8, 2006Assignee: Particle Measuring Systems, Inc.Inventors: Thomas Bates, Richard O. Miller, Richard A. Alexander
-
Patent number: 7030980Abstract: A fluid particle counter comprising an intracavity diode pumped solid state laser having a solid state lasing material having a non-reflective coating and a concave mirror having a reflective coating, with the coatings isolated from the sample flow by Brewster windows. The laser beam is apertured by an aperture assembly including an inner aperture closest to the inlet nozzle assembly and an outer aperture farther from the inlet nozzle assembly, with the outer aperture significantly farther from the inner aperture than the inner aperture is from the inlet nozzle assembly.Type: GrantFiled: December 29, 2004Date of Patent: April 18, 2006Assignee: Particle Measuring Systems, Inc.Inventors: Dwight A. Sehler, Todd A. Cerni
-
Publication number: 20060038998Abstract: A liquid particle counter for optically detecting an unconstrained particle suspended in a flowing liquid includes a sample chamber having a liquid inlet and a liquid outlet; a laser diode module producing a symmetrically collimated laser beam; a beam shaping optical system directing the laser beam at the sample chamber; and an optical detector located to detect light scattered by the particle in the sample chamber, the detector producing an electric signal characteristic of a parameter of the particle. The laser beam has an energy of a watt or more and passed through an aperture in a black glass aperture element in the sample chamber. The black glass aperture element removes diffracted and stray light from the beam without damage to the sample chamber.Type: ApplicationFiled: August 20, 2004Publication date: February 23, 2006Applicant: Particle Measuring Systems, Inc.Inventor: Gregg Wagner
-
Patent number: 6945090Abstract: A molecular contamination monitor for monitoring molecular contamination on a surface of a subject surface susceptible to degradation by a molecular contaminant. The monitor includes a surface acoustic wave (SAW) device having a SAW measurement surface coated with a material that is equivalent to the subject material with respect to spontaneous contamination by a contaminant. In the preferred embodiment, the coating comprises the same material as the subject surface or a material that interacts chemically with the contaminant in an equivalent manner to the subject surface. Exemplary coatings include: photoresist, copper, silver, gold, platinum, titanium, tungsten, aluminum, nickel, metal oxides, stearic acid, silicon, gallium arsenide, gallium nitride, germanium, silicon germanium, silicon dioxide, silicon nitride, and glass. Exemplary coating methods include sputtering, CVD, ALD and misted deposition.Type: GrantFiled: June 24, 2002Date of Patent: September 20, 2005Assignee: Particle Measuring Systems, Inc.Inventor: Daniel Rodier
-
Publication number: 20050146717Abstract: An opaque slurry chemical constituent measurement system includes a cross-flow or membrane filter having a porous filter element connected between a global slurry loop and a spectrometer. The opaque slurry particles cannot pass through the filter element but pass through the filter cartridge into the day tank, while the chemical constituent to be measured permeates through the filter element to the spectrometer, where it is measured, and thence to a reservoir. About once every five minutes the porous filter element is reverse flushed for less than a second to clear the filter pores. One to several times per hour, the reservoir is emptied into the day tank. The system provides essentially continuous measurement of the slurry chemical composition, does not consume reagent chemicals, does not create a chemical waste stream, and provides high reliability and low maintenance by preventing the abrasive slurry particles from contacting the fluidic sampling valves.Type: ApplicationFiled: December 31, 2003Publication date: July 7, 2005Applicant: Particle Measuring Systems, Inc.Inventor: Todd Cerni
-
Patent number: 6903818Abstract: An optical particle counter has a gain-apertured laser cavity producing laser light, an inlet jet providing fluid flow into a particle detecting region within the laser cavity, the inlet jet having an inlet jet orifice; a detection optics assembly located to collect light scattered from particles with the detecting region for producing an output signal indicative of the particles; and an optical barrier complex located to reduce noise as compared to the gain-apertured system without the optical barrier complex for fluid flow rates greater than or equal to about 0.1 cubic feet per minute. The optical barrier complex inhibits laser light from illuminating turbulent eddy currents originating on the interior walls of the inlet jet. The optical barrier complex includes one or more physical apertures, one or more optical stops, or both which are located to prevent laser light from illuminating the eddy currents.Type: GrantFiled: October 28, 2002Date of Patent: June 7, 2005Assignee: Particle Measuring Systems, Inc.Inventors: Todd A. Cerni, Dwight A. Sehler, Mark A. Lilly
-
Publication number: 20050100181Abstract: A parametric transducer which includes a support member extending along an x-axis and a y-axis and having opposing front and back surfaces. The support member includes an array of parallel ridges extending along the x-axis and spaced apart along the y-axis at predetermined separation distances. The ridges have forward, film contacting faces to support an emitter film in a desired film configuration for emitting parametric output. An electrically sensitive and mechanically responsive (ESMR) film is disposed over the support member with one side of the ESMR film being captured by the film contacting faces, and with arcuate sections aligned with and positioned between the parallel ridges. The film contacting faces mechanically isolate each of the arcuate sections of ESMR film from adjacent arcuate sections.Type: ApplicationFiled: August 20, 2004Publication date: May 12, 2005Applicants: Particle Measuring Systems, Inc.Inventors: James Croft, Mark Norris, Norbert Daberko
-
Patent number: 6859277Abstract: A fluid particle counter comprising an inlet jet tip producing an air flow, a strip laser diode producing a laser beam, and a beam shaping system that includes an aspheric collimating lens, an achromatic spherical lens, a cylinder lens, and a series of cascading apertures. A retarder rotates the polarization so that the TE mode is along the direction of fluid flow. The optical system is designed so that along the flow axis the laser beam is single mode, while the multimodes due to the strip laser are constrained to the dimension perpendicular to the flow. The beam is pinched to a 35 micron waist and has a Gaussian profile along the flow direction which permits locating the beam within 3.5 mm of the flow tip while preventing stray light scattering from the tip. The beam profile along the axis perpendicular to the flow is closer to a square wave than a Gaussian.Type: GrantFiled: August 27, 2002Date of Patent: February 22, 2005Assignee: Particle Measuring Systems, Inc.Inventors: Gregg A. Wagner, Thomas Bates
-
Publication number: 20050028593Abstract: A device for monitoring molecular contamination includes a measurement element comprising a high surface area material having a surface area greater than 100 square meters per gram, and a sensing circuit connected to the measurement element and providing an output signal characteristic of molecular contamination on the surface of the material. The high surface area material can be an aerogel, carbon, activated carbon, a polymer based on diphenyl p-phenylene oxide, silica, a resorcinol-formaldehyde organic polymer, alumina, or a nanocellular carbon foam or other material. The high surface area material can be doped with a specific molecule which interacts with a particular contaminant molecule.Type: ApplicationFiled: August 4, 2003Publication date: February 10, 2005Applicant: Particle Measuring Systems, Inc.Inventor: Daniel Rodier
-
Publication number: 20040214334Abstract: A molecular contamination monitoring system includes a piezoelectric measurement sensor exposed to a molecular constituent to be measured; a piezoelectric reference sensor; and a filter for filtering said molecular constituent, the filter located between the reference sensor and the measurement environment. The reference sensor is exposed to the same ambient conditions of temperature, pressure and humidity as the measurement sensor. Alternatively, there may be a plurality of different reference sensors having different filters, or there may be a plurality of different measurement sensors.Type: ApplicationFiled: April 23, 2003Publication date: October 28, 2004Applicant: Particle Measuring Systems, Inc.Inventors: Daniel Rodier, Scott Waisanen, Dale Griffin
-
Publication number: 20040080747Abstract: An optical particle counter has a gain-apertured laser cavity producing laser light, an inlet jet providing fluid flow into a particle detecting region within the laser cavity, the inlet jet having an inlet jet orifice; a detection optics assembly located to collect light scattered from particles with the detecting region for producing an output signal indicative of the particles; and an optical barrier complex located to reduce noise as compared to the gain-apertured system without the optical barrier complex for fluid flow rates greater than or equal to about 0.1 cubic feet per minute. The optical barrier complex inhibits laser light from illuminating turbulent eddy currents originating on the interior walls of the inlet jet. The optical barrier complex includes one or more physical apertures, one or more optical stops, or both which are located to prevent laser light from illuminating the eddy currents.Type: ApplicationFiled: October 28, 2002Publication date: April 29, 2004Applicant: Particle Measuring Systems, Inc.Inventors: Todd A. Cerni, Dwight A. Sehler, Mark A. Lilly
-
Patent number: 6709311Abstract: An apparatus and method for determining the chemical content of a chemical mechanical planarization (CMP) slurry. A CMP sample cell has windows for passing electromagnetic radiation. Three wavelengths of electromagnetic radiation, one of which is strongly absorbed by said CMP slurry and the other two of which are weakly absorbed by said CMP slurry, are directed through said sample cell to a detector, which processes a signal. A processor utilizes the signal to determine the transmission at each wavelength, then utilizes Beer's law to determine a transmission function for each wavelength, and calculates the wavelength dependent particle transmission for each wavelength using an optical model, to form a system of three equations in three unknowns, which are solved to determine a parameter representative of the chemical content of the CMP slurry.Type: GrantFiled: August 13, 2001Date of Patent: March 23, 2004Assignee: Particle Measuring Systems, Inc.Inventor: Todd A. Cerni
-
Publication number: 20040042008Abstract: A fluid particle counter comprising an inlet jet tip producing an air flow, a strip laser diode producing a laser beam, and a beam shaping system that includes an aspheric collimating lens, an achromatic spherical lens, a cylinder lens, and a series of cascading apertures. A retarder rotates the polarization so that the TE mode is along the direction of fluid flow. The optical system is designed so that along the flow axis the laser beam is single mode, while the multimodes due to the strip laser are constrained to the dimension perpendicular to the flow. The beam is pinched to a 35 micron waist and has a Gaussian profile along the flow direction which permits locating the beam within 3.5 mm of the flow tip while preventing stray light scattering from the tip. The beam profile along the axis perpendicular to the flow is closer to a square wave than a Gaussian.Type: ApplicationFiled: August 27, 2002Publication date: March 4, 2004Applicant: Particle Measuring Systems, Inc.Inventors: Gregg A. Wagner, Thomas Bates
-
Publication number: 20030235926Abstract: A flow-through monitor for detecting molecular contamination (MC) within a fluid flow. The monitor has a diffusion chamber having an inlet port and an outlet port, and a structure for supporting a fluid flow from the inlet port to the outlet port. The structure includes a flow gap causing a diffusion of molecular contaminants into the diffusion chamber, while substantially preventing, for a rate of the fluid flow above a predetermined magnitude, particulate contaminants within the fluid from entering the diffusion chamber. A SAW device detects molecular contamination interior to the diffusion chamber. Fluid input to the flow-through monitor may be diluted by a pure fluid for extended monitor life. A system for aggregate sampling connects an ensemble manifold upstream of the flow-through monitor. A system for triggered sampling connects a sample preconcentrator downstream of the flow-through monitor. A chemically selective membrane may be located between the flow gap and the SAW.Type: ApplicationFiled: June 24, 2002Publication date: December 25, 2003Applicant: Particle Measuring Systems, Inc.Inventors: Brian A. Knollenberg, Daniel Rodier, Scott Waisanen
-
Publication number: 20030233864Abstract: A molecular contamination monitor for monitoring molecular contamination on a surface of a subject surface susceptible to degradation by a molecular contaminant. The monitor includes a surface acoustic wave (SAW) device having a SAW measurement surface coated with a material that is equivalent to the subject material with respect to spontaneous contamination by a contaminant. In the preferred embodiment, the coating comprises the same material as the subject surface or a material that interacts chemically with the contaminant in an equivalent manner to the subject surface. Exemplary coatings include: photoresist, copper, silver, gold, platinum, titanium, tungsten, aluminum, nickel, metal oxides, stearic acid, silicon, gallium arsenide, gallium nitride, germanium, silicon germanium, silicon dioxide, silicon nitride, and glass. Exemplary coating methods include sputtering, CVD, ALD and misted deposition.Type: ApplicationFiled: June 24, 2002Publication date: December 25, 2003Applicant: Particle Measuring Systems, Inc.Inventor: Daniel Rodier
-
Patent number: 6615679Abstract: A system for detecting particles in a clean environment includes and ensemble manifold having a plurality of sample ports, a delivery port, and flow junction having no open-close valves or other flow selectors connecting all of said sample ports to said delivery port. In one embodiment, the ensemble manifold is mounted directly on a particle detector using a snap-on connector. A plurality of fluid sources are located in a clean environment, each of the fluid sources fluidically connected to one of the sample ports.Type: GrantFiled: August 15, 2000Date of Patent: September 9, 2003Assignee: Particle Measuring Systems, Inc.Inventors: Brian A. Knollenberg, Glenn W. Brandon, Bryan Bast
-
Publication number: 20030032366Abstract: An apparatus and method for determining the chemical content of a chemical mechanical planarization (CMP) slurry. A CMP sample cell has windows for passing electromagnetic radiation. Three wavelengths of electromagnetic radiation, one of which is strongly absorbed by said CMP slurry and the other two of which are weakly absorbed by said CMP slurry, are directed through said sample cell to a detector, which processes a signal. A processor utilizes the signal to determine the transmission at each wavelength, then utilizes Beer's law to determine a transmission function for each wavelength, and calculates the wavelength dependent particle transmission for each wavelength using an optical model, to form a system of three equations in three unknowns, which are solved to determine a parameter representative of the chemical content of the CMP slurry.Type: ApplicationFiled: August 13, 2001Publication date: February 13, 2003Applicant: Particle Measuring Systems, Inc.Inventor: Todd A. Cerni
-
Patent number: 6275290Abstract: A sensitive particle distribution probe uses special processing including a modified Twomey/Chahine iterative convergence technique and a specially constructed sample cell to obtain particle size distribution measurements from optically dense slurries, such as the slurries used in the semiconductor industry for chemical mechanical planarization. Spectral transmission data is taken over the spectral range of 0.20-2.5 microns, utilizing specially constructed, chemically resistant sample cells of 50-2000 microns thickness, and miniature, fixed grating, linear detector array spectrometers. At wavelengths greater than one micron, the preferred design utilizes InGaAs linear detector arrays. An ultrasonic disrupter can be employed to breakup harmless soft agglomerates. In addition to direct particle size distribution measurement, the invention described here could be used to detect other fundamental causes of slurry degradation, such as foaming and jelling.Type: GrantFiled: April 22, 1999Date of Patent: August 14, 2001Assignee: Particle Measuring Systems, Inc.Inventors: Todd A. Cerni, Scott Waisanen, Dennis J. Knowlton
-
Patent number: 6246474Abstract: A very sensitive particle distribution probe uses special processing including a modified Twomey/Chahine iterative convergence technique and a specially constructed sample cell to obtain particle size distribution measurements from optically dense slurries, such as the slurries used in the semiconductor industry for chemical mechanical planarization. Spectral transmission data is taken over the spectral range of 0.20-2.5 microns, utilizing specially constructed, chemically resistant sample cells of 50-250 microns thickness, and miniature, fixed grating, linear detector array spectrometers. At wavelengths greater than 1 micron, the preferred design utilizes InGaAs linear detector arrays. An ultrasonic disrupter can be employed to breakup harmless soft agglomerates. In addition to direct particle size distribution measurement, the invention described here could be used to detect other fundamental causes of slurry degradation, such as foaming and jelling.Type: GrantFiled: April 29, 1998Date of Patent: June 12, 2001Assignee: Particle Measuring Systems, Inc.Inventors: Todd A. Cerni, Scott Waisanen