Patents Assigned to PDF Solutions
  • Patent number: 9721937
    Abstract: An IC includes first and second designs of experiments (DOEs), each comprised of at least two fill cells. The fill cells contain structures configured to obtain in-line data via non-contact electrical measurements (“NCEM”). The first DOE contains fill cells configured to enable non-contact (NC) detection of side-to-side shorts, and the second DOE contains fill cells configured to enable NC detection of tip-to-tip shorts.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: August 1, 2017
    Assignee: PDF Solutions, Inc.
    Inventors: Stephen Lam, Dennis Ciplickas, Tomasz Brozek, Jeremy Cheng, Simone Comensoli, Indranil De, Kelvin Doong, Hans Eisenmann, Timothy Fiscus, Jonathan Haigh, Christopher Hess, John Kibarian, Sherry Lee, Marci Liao, Sheng-Che Lin, Hideki Matsuhashi, Kimon Michaels, Conor O'Sullivan, Markus Rauscher, Vyacheslav Rovner, Andrzej Strojwas, Marcin Strojwas, Carl Taylor, Rakesh Vallishayee, Larg Weiland, Nobuharu Yokoyama
  • Patent number: 9721938
    Abstract: An IC includes first and second designs of experiments (DOEs), each comprised of at least two fill cells. The fill cells contain structures configured to obtain in-line data via non-contact electrical measurements (“NCEM”). The first DOE contains fill cells configured to enable non-contact (NC) detection of tip-to-tip shorts, and the second DOE contains fill cells configured to enable NC detection of corner shorts.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: August 1, 2017
    Assignee: PDF Solutions, Inc.
    Inventors: Stephen Lam, Dennis Ciplickas, Tomasz Brozek, Jeremy Cheng, Simone Comensoli, Indranil De, Kelvin Doong, Hans Eisenmann, Timothy Fiscus, Jonathan Haigh, Christopher Hess, John Kibarian, Sherry Lee, Marci Liao, Sheng-Che Lin, Hideki Matsuhashi, Kimon Michaels, Conor O'Sullivan, Markus Rauscher, Vyacheslav Rovner, Andrzej Strojwas, Marcin Strojwas, Carl Taylor, Rakesh Vallishayee, Larg Weiland, Nobuharu Yokoyama
  • Patent number: 9711496
    Abstract: An IC includes first and second designs of experiments (DOES), each comprised of at least two fill cells. The fill cells contain structures configured to obtain in-line data via non-contact electrical measurements (“NCEM”). The first DOE contains fill cells configured to enable non-contact (NC) detection of side-to-side shorts, and the second DOE contains fill cells configured to enable NC detection of tip-to-side shorts.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: July 18, 2017
    Assignee: PDF Solutions, Inc.
    Inventors: Stephen Lam, Dennis Ciplickas, Tomasz Brozek, Jeremy Cheng, Simone Comensoli, Indranil De, Kelvin Doong, Hans Eisenmann, Timothy Fiscus, Jonathan Haigh, Christopher Hess, John Kibarian, Sherry Lee, Marci Liao, Sheng-Che Lin, Hideki Matsuhashi, Kimon Michaels, Conor O'Sullivan, Markus Rauscher, Vyacheslav Rovner, Andrzej Strojwas, Marcin Strojwas, Carl Taylor, Rakesh Vallishayee, Larg Weiland, Nobuharu Yokoyama
  • Patent number: 9711421
    Abstract: Improved processes for manufacturing wafers, chips, or dies utilize in-line data obtained from non-contact electrical measurements (“NCEM”) of fill cells that contain structures configured to target/expose a variety of open-circuit, short-circuit, leakage, or excessive resistance failure modes, including GATE-snake-open and/or GATE-snake-resistance failure modes. Such processes may involve evaluating Designs of Experiments (“DOEs”), comprised of multiple NCEM-enabled fill cells, in at least two variants, all targeted to the same failure mode(s).
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: July 18, 2017
    Assignee: PDF Solutions, Inc.
    Inventors: Stephen Lam, Dennis Ciplickas, Tomasz Brozek, Jeremy Cheng, Simone Comensoli, Indranil De, Kelvin Doong, Hans Eisenmann, Timothy Fiscus, Jonathan Haigh, Christopher Hess, John Kibarian, Sherry Lee, Marci Liao, Sheng-Che Lin, Hideki Matsuhashi, Kimon Michaels, Conor O'Sullivan, Markus Rauscher, Vyacheslav Rovner, Andrzej Strojwas, Marcin Strojwas, Carl Taylor, Rakesh Vallishayee, Larg Weiland, Nobuharu Yokoyama
  • Patent number: 9704846
    Abstract: The present invention relates to IC chips containing a mixture of standard cells obtained from an original set of design rules and enhanced standard cells that are a variant of the original set of design rules and methods for making the same.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: July 11, 2017
    Assignee: PDF Solutions, Inc.
    Inventors: Jonathan Haigh, Elizabeth Lagnese
  • Patent number: 9691669
    Abstract: Described are test structures and methods for measuring silicon thickness in fully depleted silicon-on-insulator technologies.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: June 27, 2017
    Assignee: PDF Solutions, Inc.
    Inventors: Sharad Saxena, Thomas Brozek, Yuan Yu, Mike Kyu Hyon Pak, Meindert Martin Lunenborg
  • Patent number: 9691672
    Abstract: An IC includes logic cells, selected from a standard cell library, and fill cells, configured for compatibility with the standard logic cells. The fill cells contain structures configured to obtain in-line data via non-contact electrical measurements (“NCEM”). The IC includes such NCEM-enabled fill cells configured to enable detection and/or measurement of a variety of open-circuit and short-circuit failure modes, including at least one via-open-related failure mode, one GATE-short-related failure mode, one GATECNT-short-related failure mode, and one metal-short-related failure mode.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: June 27, 2017
    Assignee: PDF Solutions, Inc.
    Inventors: Stephen Lam, Dennis Ciplickas, Tomasz Brozek, Jeremy Cheng, Simone Comensoli, Indranil De, Kelvin Doong, Hans Eisenmann, Timothy Fiscus, Jonathan Haigh, Christopher Hess, John Kibarian, Sherry Lee, Marci Liao, Sheng-Che Lin, Hideki Matsuhashi, Kimon Michaels, Conor O'Sullivan, Markus Rauscher, Vyacheslav Rovner, Andrzej Strojwas, Marcin Strojwas, Carl Taylor, Rakesh Vallishayee, Larg Weiland, Nobuharu Yokoyama
  • Patent number: 9653446
    Abstract: An IC includes logic cells, selected from a standard cell library, and fill cells, configured for compatibility with the standard logic cells. The fill cells contain structures configured to obtain in-line data via non-contact electrical measurements (“NCEM”). The IC includes such NCEM-enabled fill cells configured to enable detection and/or measurement of a variety of open-circuit and short-circuit failure modes, including at least one via-open-related failure mode, one AACNT-short-related failure mode, one TS-short-related failure mode, and one AA-short-related failure mode.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: May 16, 2017
    Assignee: PDF Solutions, Inc.
    Inventors: Stephen Lam, Dennis Ciplickas, Tomasz Brozek, Jeremy Cheng, Simone Comensoli, Indranil De, Kelvin Doong, Hans Eisenmann, Timothy Fiscus, Jonathan Haigh, Christopher Hess, John Kibarian, Sherry Lee, Marci Liao, Sheng-Che Lin, Hideki Matsuhashi, Kimon Michaels, Conor O'Sullivan, Markus Rauscher, Vyacheslav Rovner, Andrzej Strojwas, Marcin Strojwas, Carl Taylor, Rakesh Vallishayee, Larg Weiland, Nobuharu Yokoyama
  • Patent number: 9646961
    Abstract: An IC includes logic cells, selected from a standard cell library, and fill cells, configured for compatibility with the standard logic cells. The fill cells contain structures configured to obtain in-line data via non-contact electrical measurements (“NCEM”). The IC includes such NCEM-enabled fill cells configured to enable detection and/or measurement of a variety of open-circuit and short-circuit failure modes, including at least one via-open-related failure mode, one AACNT-short-related failure mode, one TS-short-related failure mode, and one metal-short-related failure mode.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: May 9, 2017
    Assignee: PDF Solutions, Inc.
    Inventors: Stephen Lam, Dennis Ciplickas, Tomasz Brozek, Jeremy Cheng, Simone Comensoli, Indranil De, Kelvin Doong, Hans Eisenmann, Timothy Fiscus, Jonathan Haigh, Christopher Hess, John Kibarian, Sherry Lee, Marci Liao, Sheng-Che Lin, Hideki Matsuhashi, Kimon Michaels, Conor O'Sullivan, Markus Rauscher, Vyacheslav Rovner, Andrzej Strojwas, Marcin Strojwas, Carl Taylor, Rakesh Vallishayee, Larg Weiland, Nobuharu Yokoyama
  • Patent number: 9627408
    Abstract: A library of a DFM-improved standard logic cells (including D flip-flop cells) that avoid pattern-degrading configurations in the M0 and/or V0 layer(s) is disclosed, along with wafers, chips and systems constructed from such cells.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: April 18, 2017
    Assignee: PDF Solutions, Inc.
    Inventor: Jonathan Haigh
  • Patent number: 9627371
    Abstract: An IC includes logic cells, selected from a standard cell library, and fill cells, configured for compatibility with the standard logic cells. The fill cells contain structures configured to obtain in-line data via non-contact electrical measurements (“NCEM”). The IC includes such NCEM-enabled fill cells configured to enable detection and/or measurement of a variety of open-circuit and short-circuit failure modes, including at least one via-open-related failure mode, one GATE-short-related failure mode, one GATECNT-short-related failure mode, and one AA-short-related failure mode.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: April 18, 2017
    Assignee: PDF Solutions, Inc.
    Inventors: Stephen Lam, Dennis Ciplickas, Tomasz Brozek, Jeremy Cheng, Simone Comensoli, Indranil De, Kelvin Doong, Hans Eisenmann, Timothy Fiscus, Jonathan Haigh, Christopher Hess, John Kibarian, Sherry Lee, Marci Liao, Sheng-Che Lin, Hideki Matsuhashi, Kimon Michaels, Conor O'Sullivan, Markus Rauscher, Vyacheslav Rovner, Andrzej Strojwas, Marcin Strojwas, Carl Taylor, Rakesh Vallishayee, Larg Weiland, Nobuharu Yokoyama
  • Patent number: 9627370
    Abstract: An IC includes logic cells, selected from a standard cell library, and fill cells, configured for compatibility with the standard logic cells. The fill cells contain structures configured to obtain in-line data via non-contact electrical measurements (“NCEM”). The IC includes such NCEM-enabled fill cells configured to enable detection and/or measurement of a variety of open-circuit and short-circuit failure modes, including at least one via-open-related failure mode, one GATE-short-related failure mode, one GATECNT-short-related failure mode, and one TS-short-related failure mode.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: April 18, 2017
    Assignee: PDF Solutions, Inc.
    Inventors: Stephen Lam, Dennis Ciplickas, Tomasz Brozek, Jeremy Cheng, Simone Comensoli, Indranil De, Kelvin Doong, Hans Eisenmann, Timothy Fiscus, Jonathan Haigh, Christopher Hess, John Kibarian, Sherry Lee, Marci Liao, Sheng-Che Lin, Hideki Matsuhashi, Kimon Michaels, Conor O'Sullivan, Markus Rauscher, Vyacheslav Rovner, Andrzej Strojwas, Marcin Strojwas, Carl Taylor, Rakesh Vallishayee, Larg Weiland, Nobuharu Yokoyama
  • Patent number: 9595536
    Abstract: A library of a DFM-improved standard logic cells that avoid pattern-degrading configurations in the M0 and/or V0 layer(s), and includes 13-CPP and 17-CPP D flip-flop cells, is disclosed, along with wafers, chips and systems constructed from such cells.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: March 14, 2017
    Assignee: PDF Solutions, Inc.
    Inventor: Jonathan Haigh
  • Patent number: 9529954
    Abstract: A library of a DFM-improved standard logic cells that avoid pattern-degrading configurations in the M0 layer is disclosed, along with wafers, chips and systems constructed from such cells.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: December 27, 2016
    Assignee: PDF Solutions, Inc.
    Inventor: Jonathan Haigh
  • Patent number: 9496119
    Abstract: The present invention discloses an e-beam inspection tool, and an apparatus for detecting defects. In one aspect is described an apparatus for detecting defects that includes a dual-deflection system that moves the e-beam over the integrated circuit to each of the plurality of predetermined locations, the dual deflection system including a magnetic deflection component that provides by magnetic deflection for movement of the e-beam through a plurality of areas on the integrated circuit and an electrostatic deflection component that provides by electrostatic deflection for movement of the e-beam within each of the plurality of areas.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: November 15, 2016
    Assignee: PDF Solutions, Inc.
    Inventors: Indranil De, Marian Mankos, Christopher Hess, Dennis J. Ciplickas
  • Patent number: 9461065
    Abstract: A library of a DFM-improved standard logic cells that avoid pattern-degrading configurations in the M0 and/or V0 layer(s) is disclosed, along with wafers, chips and systems constructed from such cells.
    Type: Grant
    Filed: April 17, 2016
    Date of Patent: October 4, 2016
    Assignee: PDF Solutions, Inc.
    Inventor: Jonathan Haigh
  • Patent number: 9438237
    Abstract: An improved 20/22 nm standard cell library, as depicted in FIGS. 1-491, achieves surprisingly significant improvements in manufacturing yield, as compared to a commercially-used library for the same fabrication process. The invention relates to product ICs made using this library (or topologically equivalent variants thereof), as well as processes for making such product ICs using said library (or its variants).
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: September 6, 2016
    Assignee: PDF Solutions, Inc.
    Inventors: Jonathan Haigh, Vyacheslav V. Rovner
  • Patent number: 9202820
    Abstract: Improved 14 nm cells, as depicted in FIGS. 1-53, realize reduced pattern complexity, high yield, high performance, and improved compactness (one poly-stripe smaller than existing designs for the disclosed cells). The invention relates to ICs made using these cells (or topologically equivalent variants thereof), as well as processes for makings such ICs using said cells (or their variants).
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: December 1, 2015
    Assignee: PDF Solutions, Inc
    Inventor: Jonathan R. Haigh
  • Patent number: 8901951
    Abstract: Circuits for performing four terminal measurement point (IMP) testing of devices under test (DUT) is provided. The DUT and the circuit is to be defined on a semiconductor chip. The circuit includes a DUT having a first terminal and a second terminal, where the first terminal of the DUT is connectable to a first terminal measurement point and a third terminal measurement point, and the second terminal of the DUT is connectable to a second terminal measurement point and a fourth terminal measurement point. A first transistor is provided to select access to the first terminal measurement point, a second transistor is provided to select access to the third terminal measurement point, a third transistor is provided to select access to the second terminal measurement point; and a fourth transistor is provided to select access to the fourth terminal measurement point.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: December 2, 2014
    Assignee: PDF Solutions, Incorporated
    Inventors: Christopher Hess, Michele Squicciarini
  • Patent number: 8587341
    Abstract: The invention provides a reduced complexity layout style based on applying a limited set of changes to an underlying repeated base template. With the templates properly defined in accordance with the characteristic features disclosed, the invention enables efficient implementation of logic circuitry, with a dramatic reduction in the pattern complexity (or number of unique layout patterns at each mask level) for realistically sized designs. This reduction in pattern complexity that the invention provides is particularly important for advanced and emerging semiconductor processes, because it enables effective use of SMO and full-chip mask optimization.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: November 19, 2013
    Assignee: PDF Solutions, Inc.
    Inventor: Tejas Jhaveri