Abstract: The present invention discloses an e-beam inspection tool, and an apparatus for detecting defects. In one aspect is described an apparatus for detecting defects that includes a dual-deflection system that moves the e-beam over the integrated circuit to each of the plurality of predetermined locations, the dual deflection system including a magnetic deflection component that provides by magnetic deflection for movement of the e-beam through a plurality of areas on the integrated circuit and an electrostatic deflection component that provides by electrostatic deflection for movement of the e-beam within each of the plurality of areas.
Type:
Grant
Filed:
January 6, 2016
Date of Patent:
November 15, 2016
Assignee:
PDF Solutions, Inc.
Inventors:
Indranil De, Marian Mankos, Christopher Hess, Dennis J. Ciplickas
Abstract: A library of a DFM-improved standard logic cells that avoid pattern-degrading configurations in the M0 and/or V0 layer(s) is disclosed, along with wafers, chips and systems constructed from such cells.
Abstract: An improved 20/22 nm standard cell library, as depicted in FIGS. 1-491, achieves surprisingly significant improvements in manufacturing yield, as compared to a commercially-used library for the same fabrication process. The invention relates to product ICs made using this library (or topologically equivalent variants thereof), as well as processes for making such product ICs using said library (or its variants).
Abstract: Improved 14 nm cells, as depicted in FIGS. 1-53, realize reduced pattern complexity, high yield, high performance, and improved compactness (one poly-stripe smaller than existing designs for the disclosed cells). The invention relates to ICs made using these cells (or topologically equivalent variants thereof), as well as processes for makings such ICs using said cells (or their variants).
Abstract: Circuits for performing four terminal measurement point (IMP) testing of devices under test (DUT) is provided. The DUT and the circuit is to be defined on a semiconductor chip. The circuit includes a DUT having a first terminal and a second terminal, where the first terminal of the DUT is connectable to a first terminal measurement point and a third terminal measurement point, and the second terminal of the DUT is connectable to a second terminal measurement point and a fourth terminal measurement point. A first transistor is provided to select access to the first terminal measurement point, a second transistor is provided to select access to the third terminal measurement point, a third transistor is provided to select access to the second terminal measurement point; and a fourth transistor is provided to select access to the fourth terminal measurement point.
Abstract: The invention provides a reduced complexity layout style based on applying a limited set of changes to an underlying repeated base template. With the templates properly defined in accordance with the characteristic features disclosed, the invention enables efficient implementation of logic circuitry, with a dramatic reduction in the pattern complexity (or number of unique layout patterns at each mask level) for realistically sized designs. This reduction in pattern complexity that the invention provides is particularly important for advanced and emerging semiconductor processes, because it enables effective use of SMO and full-chip mask optimization.
Abstract: A test structure for localizing shorts in an integrated circuit and method of testing is described. A first comb structure is formed from a first busbar and a first plurality of fingers extending from the first busbar. A second comb structure formed from a second busbar and a second plurality of fingers extending from the second busbar. The second plurality of fingers is interleaved with the first plurality of fingers. A plurality of pass gates is connected between the first plurality of fingers and the first busbar. A pass gate terminal is electrically connected to the gate electrode of each of the plurality of pass gates. When the pass gates are turned OFF thereby disconnecting the first busbar from the first plurality of fingers, voltage contrast imaging can be used to identify which of the first fingers is adjacent the short.
Abstract: A method is disclosed for localizing product yield variability to a process module. The method includes obtaining fail rate and critical area data for each process module layer in a number of test chips. A variance in a defect density (DD) probability density function (PDF) is determined based on the obtained fail rate and critical area data for each process module layer. A percent contribution from each process module layer to the variance in DD PDF is determined. Based on the determined percent contribution to the variance in DD PDF from each process module layer, one or more process module layers are identified as contributing to the determined variance in the DD PDF. Additionally, a method is provided to assess the impact on product yield due to reduction in the yield variability associated with a particular process module layer.
Abstract: A Characterization Vehicle (CV) and a method for forming it which yields a gain in efficiency for IC yield ramp improvements by enabling faster learning cycles and diagnosis while reducing costs. A plurality of SF experiments are combined into a single full flow mask set with many inline testing points. Smaller pads are arranged in a way supporting testing of interleaved pad frames, parallel testing, and the usage of stacked test structures, or Devices Under Test (DUT's).
Type:
Grant
Filed:
September 25, 2007
Date of Patent:
January 29, 2013
Assignee:
PDF Solutions, Inc.
Inventors:
Christopher Hess, John Kibarian, Amit Joag, Abdul Mobeen Mohammed, Ben Shieh, David Stashower
Abstract: A test chip comprises at least one level having an array of regions. Each region is capable of including at least one test structure. At least some of the regions include respective test structures. The level has a plurality of driver lines that provide input signals to the test structures. The level has a plurality of receiver lines that receive output signals from the test structures. The level has a plurality of devices for controlling current flow. Each test structure is connected to at least one of the driver lines with a first one of the devices in between. Each test structure is connected to at least one of the receiver lines with a second one of the devices in between, so that each of the test structures can be individually addressed for testing using the driver lines and receiver lines.
Abstract: A method and system is described for mapping a system-level description of an integrated system directly to a technology-specific set of logic cells that are comprised primarily of large complex cells (bricks). The invention is based on applying aggressive Boolean operations that would be of impractical runtime complexity for a large library, but are applicable for the targeted brick libraries which typically contain a small number of complex cells, along with a much smaller number of simple cells. This invention is modular such that it can be applied in the context of incremental netlist optimization as well as optimization during physical synthesis.
Abstract: A method for predicting an impact on post-repair yield resulting from manufacturing process modification is described. The method includes receiving bit data representing locations of defective memory cells for a plurality of memory devices. The bit data is modified by removing a selected failure pattern type according to a modification scheme to generate modified bit data. Repairs are simulated on hypothetical memory devices corresponding to the modified bit data, generating a result indicating whether the hypothetical memory device is good or bad. A post-repair yield is then identified and a report is generated indicating the post-repair yield, the post-repair yield representing a number of the plurality of memory devices that would be functional after repair had the plurality of memory devices been manufactured without the selected failure pattern. A method to identify a process providing the best economic benefit is also described.
Abstract: The invention provides a reduced complexity layout style based on applying a limited set of changes to an underlying repeated base template. With the templates properly defined in accordance with the characteristic features disclosed, the invention enables efficient implementation of logic circuitry, with a dramatic reduction in the pattern complexity (or number of unique layout patterns at each mask level) for realistically sized designs. This reduction in pattern complexity that the invention provides is particularly important for advanced and emerging semiconductor processes, because it enables effective use of SMO and full-chip mask optimization.
Abstract: The invention provides a reduced complexity layout style based on applying a limited set of changes to an underlying repeated base template. With the templates properly defined in accordance with the characteristic features disclosed, the invention enables efficient implementation of logic circuitry, with a dramatic reduction in the pattern complexity (or number of unique layout patterns at each mask level) for realistically sized designs. This reduction in pattern complexity that the invention provides is particularly important for advanced and emerging semiconductor processes, because it enables effective use of SMO and full-chip mask optimization.
Abstract: A test vehicle and method for electrical characterization of misalignment, for example resulting from double patterning processes, that enables characterization of patterns on wafers which have finished processing. It includes a structure and method for measurement of a space-sensitive electrical parameter to characterize gaps between features of different sub-patterns on a semiconductor wafer portion, and may further comprise a test structure for measuring feature dimensions.
Abstract: Systems and methods for detecting and monitoring Nickel-silicide process and induced failures. In a first method embodiment, a method of characterizing a Nickel-silicide semiconductor manufacturing process includes accessing a test chip including a parallel coupled chain of transistors, wherein the transistors are designed for inducing stress into Nickel-silicide features of the transistors, and for increasing a probability of a manufacturing failure of the Nickel-silicide features. A biasing voltage is applied to one terminal of the parallel coupled chain, all other terminals of the parallel coupled chain and grounded, and current is measured at each of the all other terminals of the parallel coupled chain. This process is repeated for each terminal of the parallel coupled chain. The measured currents from all possible conduction paths are compared to determine a manufacturing defect in the parallel coupled chain of transistors.
Type:
Grant
Filed:
October 14, 2008
Date of Patent:
April 26, 2011
Assignee:
PDF Solutions
Inventors:
Sharad Saxena, Jae-Yong Park, Benjamin Shieh, Mark Spinelli, Shiying Xiong, Hossein Karbasi
Abstract: The invention provides a method and process for designing an integrated circuit based on using the results from both 1) a specific set of silicon test structure characterizations and 2) the decomposition of logic into combinations of simple logic primitives, from which a set of logic bricks are derived that can be assembled for a manufacturable-by-construction design. This implementation of logic is compatible with the lithography settings that are used for implementation of the memory blocks and other components on the integrated circuit, particularly by implementing geometrically consistent component features. The invention provides the ability to recompile a design comprised of logic and memory blocks onto a new geometry fabric to implement a set of technology-specific design changes, without requiring a complete redesign of the entire integrated circuit.
Type:
Grant
Filed:
October 2, 2007
Date of Patent:
March 15, 2011
Assignee:
PDF Solutions, Inc.
Inventors:
Lawrence T. Pileggi, Andrzej J. Strojwas, Lucio L. Lanza
Abstract: Circuits for performing four terminal measurement point (TMP) testing of devices under test (DUT) is provided. The DUT and the circuit is to be defined on a semiconductor chip. The circuit includes a DUT having a first terminal and a second terminal, where the first terminal of the DUT is connectable to a first terminal measurement point and a third terminal measurement point, and the second terminal of the DUT is connectable to a second terminal measurement point and a fourth terminal measurement point. A first transistor is provided to select access to the first terminal measurement point, a second transistor is provided to select access to the third terminal measurement point, a third transistor is provided to select access to the second terminal measurement point; and a fourth transistor is provided to select access to the fourth terminal measurement point.
Abstract: A global predictive monitoring system for a manufacturing facility. The system may be employed in an integrated circuit (IC) device fabrication facility to monitor processing of semiconductor wafers. The system may include deployment of a swarm of individually separate agents running in computers in the facility. Each agent may comprise a genetic algorithm and use several neural networks for computation. Each agent may be configured to receive a limited set of inputs, such as defectivity data and WIP information, and calculate a risk from the inputs. A risk may be a value indicative of a production yield. Each agent may also generate a quality value indicative of a reliability of the risk value. New agents may be generated from the initial population of agents. Outputs from the agents may be collected and used to calculate projections indicative of a trend of the production yield.
Abstract: A test structure for localizing shorts in an integrated circuit and method of testing is described. A first comb structure is formed from a first busbar and a first plurality of fingers extending from the first busbar. A second comb structure formed from a second busbar and a second plurality of fingers extending from the second busbar. The second plurality of fingers is interleaved with the first plurality of fingers. A plurality of pass gates is connected between the first plurality of fingers and the first busbar. A pass gate terminal is electrically connected to the gate electrode of each of the plurality of pass gates. When the pass gates are turned OFF thereby disconnecting the first busbar from the first plurality of fingers, voltage contrast imaging can be used to identify which of the first fingers is adjacent the short.