Patents Assigned to Photon, Inc.
  • Patent number: 7977718
    Abstract: The present invention relates to a photodiode of an image sensor using a three-dimensional multi-layer substrate, and more particularly, to a method of implementing a buried type photodiode and a structure thereof, and a trench contact method for connecting a photodiode in a multi-layer substrate and a transistor for signal detection.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: July 12, 2011
    Assignees: Lumiense Photonics, Inc., Hanvision Co., Ltd.
    Inventor: Robert Steven Hannebauer
  • Patent number: 7972885
    Abstract: This invention relates to imaging device and its related transferring technologies to independent substrate able to attain significant broadband capability covering the wavelengths from ultra-violet (UV) to long-Infrared. More particularly, this invention is related to the broadband image sensor (along with its manufacturing technologies), which can detect the light wavelengths ranges from as low as UV to the wavelengths as high as 20 ?m covering the most of the wavelengths using of the single monolithic image sensor on the single wafer. This invention is also related to the integrated circuit and the bonding technologies of the image sensor to standard integrated circuit for multicolor imaging, sensing, and advanced communication. Our innovative approach utilizes surface structure having more than micro-nano-scaled 3-dimensional (3-D) blocks which can provide broad spectral response.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: July 5, 2011
    Assignee: Banpil Photonics, Inc.
    Inventors: Achyut Kumar Dutta, Robert Allen Olah
  • Patent number: 7964453
    Abstract: The manufacturing methodology to produce polycrystalline silicon in time and cost efficient manner uses a spatially selective crystallization approach to greatly reduce the amount of energy delivered to the work surface. The amorphous silicon film is subjected to laser radiation substantially exclusively at localized areas where TFTs are to be formed. The source of radiation is a copper vapor laser which produces a highly stable radiation in a visible spectrum with an energy sufficient to convert amorphous silicon into polysilicon in 1-3 shots. The optic system delivers the homogenized, conditioned and focused laser beam to the area of interest in a controlled manner. Single or multi-laser beam arrangements, as well as different shapes and sizes of laser beam spots are contemplated.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: June 21, 2011
    Assignee: Potomac Photonics, Inc.
    Inventors: Nicholas Doudoumopoulos, Paul Christensen, Paul Wickboldt
  • Patent number: 7957433
    Abstract: A mode-locked fiber laser comprising a multicomponent glass fiber doped with a trivalent rare-earth ion of thulium and/or holmium.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: June 7, 2011
    Assignee: AdValue Photonics, Inc.
    Inventors: Shibin Jiang, Qing Wang, Jihong Geng, Tao Luo
  • Publication number: 20110129180
    Abstract: An all-fiber Faraday rotator array comprising a plurality of Faraday rotating fibers, each having a doping concentration of 55%-85% (wt./wt.) of a rare-earth oxide, and a magnetic tube surrounding the plurality of Faraday rotating fibers is presented. The rare-earth oxide is selected from the group comprising: Pr2O3, Nd2O3, Pm2O3, Sm2O3, Eu2O3, Gd2O3, Tb2O3, Dy2O3, Ho2O3; Er2O3, Tm2O3, Yb2O3, La2O3, Ga2O3, Ce2O3, and Lu2O3. Additionally, an all-fiber isolator using highly rare-earth oxide doped fibers is disclosed.
    Type: Application
    Filed: May 12, 2010
    Publication date: June 2, 2011
    Applicant: Advalue Photonics, Inc.
    Inventor: Shibin Jiang
  • Patent number: 7943409
    Abstract: The present invention relates to a photodiode of an image sensor using a three-dimensional multi-layer substrate, and more particularly, to a method of implementing a buried type photodiode and a structure thereof, and a trench contact method for connecting a photodiode in a multi-layer substrate and a transistor for signal detection.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: May 17, 2011
    Assignees: Lumiense Photonics, Inc., Hanvision Co., Ltd.
    Inventor: Robert Steven Hannebauer
  • Publication number: 20110109869
    Abstract: A reconfigurable optical cross-connect switch includes N input ports and M output ports, where N and M are integers with a value of two or more. The switch has a set of switching stages where each switching stage includes a polarization switch to receive an input linearly polarized optical beam. One or more birefringent prism pairs associated with the polarization switch directs the input linearly polarized optical beam to any of the M output ports through control of the polarization switch.
    Type: Application
    Filed: November 5, 2010
    Publication date: May 12, 2011
    Applicant: CoAdna Photonics, Inc.
    Inventor: FENGHUA LI
  • Patent number: 7938547
    Abstract: A display system includes a coherent light source that can emit a coherent light beam, an optical component that can direct the coherent light beam to a spatial light modulator, a transport mechanism that can move the optical component to produce a movement in the coherent light beam, and a spatial light modulator having a two-dimensional array of mirrors each configured to selectively reflect the coherent light beam either toward a screen surface or away from the screen surface to form a display pixel on the screen surface. A display image is formed on the display screen by display pixels produced by the mirrors that reflect the coherent light beam toward the screen surface.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: May 10, 2011
    Assignee: Spatial Photonics, Inc.
    Inventors: Shaoher X. Pan, Vlad Novotny
  • Patent number: 7936799
    Abstract: A laser system includes at least two sources configured to provide at least two spatially separated laser beams, and a mount configured to mount the at least two sources along an arc, the arc defining an angular coordinate and a radial coordinate, wherein an axial coordinate is orthogonal to the angular coordinate and the radial coordinate, and the spatially separated laser beams are separated in the axial coordinate. The mount is further configured to mount the at least two sources providing thereby an offset of the laser beams in the axial coordinate such that the laser beams interleave in the axial direction at a center region of the arc.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: May 3, 2011
    Assignee: Trumpf Photonics Inc.
    Inventors: Ulrich Bonna, Martin Liermann, Viorel C. Negoita, Thilo Vethake, Alexander Killi, Christoph Tillkorn
  • Patent number: 7922976
    Abstract: A sensing device able to do concurrent real time detection of different kinds of chemical, biomolecule agents, or biological cells and their respective concentrations using optical principles. The sensing system can be produced at a low cost (below $1.00) and in a small size (˜1 cm3). The novel sensing system may be of great value to many industries, for example, medical, forensics, and military. The fundamental principles of this novel invention may be implemented in many variations and combinations of techniques.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: April 12, 2011
    Assignee: Banpil Photonics, Inc.
    Inventors: Achyut Kumar Dutta, Rabi S Sengupta
  • Patent number: 7923282
    Abstract: Formation of stretchable photovoltaic devices and carriers is described. In some examples, a formation method includes: forming a stretchable carrier including a stretchable part having a given length, the given length being operable to change in response to a force being applied to the stretchable carrier; depositing a photovoltaic cell over a surface of the stretchable carrier; and interconnecting the photovoltaic cell to output terminals.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: April 12, 2011
    Assignee: Sunlight Photonics Inc.
    Inventors: Sergey V. Frolov, Michael Cyrus, Allan J. Bruce
  • Patent number: 7923273
    Abstract: An optoelectronics chip-to-chip interconnects system is provided, including at least one packaged chip to be connected on the printed-circuit-board with at least one other packaged chip, optical-electrical (O-E) conversion mean, waveguide-board, and (PCB). Single to multiple chips interconnects can be interconnected provided using the technique disclosed in this invention. The packaged chip includes semiconductor die and its package based on the ball-grid array or chip-scale-package. The O-E board includes the optoelectronics components and multiple electrical contacts on both sides of the O-E substrate. The waveguide board includes the electrical conductor transferring the signal from O-E board to PCB and the flex optical waveguide easily stackable onto the PCB to guide optical signal from one chip-to-other chip. Alternatively, the electrode can be directly connected to the PCB instead of including in the waveguide board. The chip-to-chip interconnections system is pin-free and compatible with the PCB.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: April 12, 2011
    Assignee: Banpil Photonics, Inc.
    Inventor: Achyut Kumar Dutta
  • Publication number: 20110080584
    Abstract: The invention concerns an optical system. The optical system comprises an input for receiving an optical signal, a predetermined output plane, and a diffraction grating for separating the optical signal received at the input into spectral elements thereof. The grating has a diffraction surface, which is formed by a photolithography process. The diffraction surface has a first predetermined profile. The first profile is formed by a plurality of points each conducted by different equations. Consequently, each spectral component is focused on the predetermined output plane.
    Type: Application
    Filed: December 13, 2010
    Publication date: April 7, 2011
    Applicant: OtO Photonics, Inc.
    Inventor: Cheng-Hao Ko
  • Patent number: 7918583
    Abstract: Lighting devices are provided for efficiently distributing light over an area to provided uniform illumination over a wide angle or other tailored illumination patterns. Each light device has at least one light source, at least one collimator for partially collimating light from the light source, and at least one diffuser for diffusing light from the collimator. The diffuser provides diffused light over an area from the diffuser having an intensity that is angularly dependent in accordance with the angular distribution intensity of light outputted from the collimator, so as to provide a predetermined illumination pattern from the device. The light sources and collimators may be provided in one or two-dimensional arrays, and a single diffuser may be formed on each collimator or the diffuser may be along a plate spaced from the collimators.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: April 5, 2011
    Assignee: RPC Photonics, Inc.
    Inventors: Stephen H. Chakmakjian, Donald J. Schertler, Tasso Sales, G. Michael Morris
  • Patent number: 7915624
    Abstract: A light emitter includes a first mirror that is an epitaxially grown metal mirror, a second mirror, and an active region that is epitaxially grown such that the active region is positioned at or close to, at least, one antinode between the first mirror and the second mirror.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: March 29, 2011
    Assignee: Lightwave Photonics, Inc.
    Inventor: Robbie J. Jorgenson
  • Patent number: 7909958
    Abstract: An optical switch includes an optical waveguide to route an input optical beam. At least one polarization switch receives the input optical beam from the optical waveguide. At least one birefringent wedge is associated with the at least one polarization switch. The at least one polarization switch and at least one birefringent wedge operate to direct the input optical beam to two or more output locations through control of the polarization switch.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: March 22, 2011
    Assignee: Coadna Photonics, Inc.
    Inventors: Hudson Washburn, Meng Xue
  • Patent number: 7910396
    Abstract: A method for producing a film of compound semiconductor includes providing a substrate and a compound bulk material having a first chemical composition that includes at least one first chemical element and a second chemical element. A film is deposited on the substrate using the compound bulk material as a single source of material. The deposited film has a composition substantially the same as the first chemical composition. A residual chemical reaction is induced in the deposited film using a source containing the second chemical element to thereby increase the content of the second chemical element in the deposited film so that the deposited film has a second chemical composition. The film may be employed in a photovoltaic device.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: March 22, 2011
    Assignee: Sunlight Photonics, Inc.
    Inventors: Sergey Frolov, Allan James Bruce, Michael Cyrus
  • Patent number: 7912331
    Abstract: Passive optical components may be used to tap the optical power, e.g., from fibers of a wavelength switch system. The passive optical components are realized by a standard photonics light-wave circuit (PLC) integrated to the fiber collimator array of the wavelength switch system. The PLC includes multiple waveguide paths that optically couple optical signals from one or more fiber ports to one or more corresponding free space optical component ports. Optical signals traveling through these waveguide paths are tapped by one or more optical taps and coupled to one or more corresponding tap ports. Each optical tap is located such that an optical signal is tapped after it is coupled into one of the waveguide paths.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: March 22, 2011
    Assignee: Capella Photonics, Inc.
    Inventor: Long Yang
  • Patent number: RE42368
    Abstract: This invention provides a novel wavelength-separating-routing (WSR) apparatus that uses a diffraction grating to separate a multi-wavelength optical signal by wavelength into multiple spectral channels, which are then focused onto an array of corresponding channel micromirrors. The channel micromirrors are individually controllable and continuously pivotable to reflect the spectral channels into selected output ports. As such, the inventive WSR apparatus is capable of routing the spectral channels on a channel-by-channel basis and coupling any spectral channel into any one of the output ports. The WSR apparatus of the present invention may be further equipped with servo-control and spectral power-management capabilities, thereby maintaining the coupling efficiencies of the spectral channels into the output ports at desired values.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: May 17, 2011
    Assignee: Capella Photonics, Inc.
    Inventors: Tai Chen, Jeffrey P. Wilde, Joseph E. Davis
  • Patent number: RE42521
    Abstract: This invention provides a novel wavelength-separating-routing (WSR) apparatus that uses a diffraction grating to separate a multi-wavelength optical signal by wavelength into multiple spectral channels, which are focused onto an array of corresponding channel micromirrors. The channel micromirrors are individually controllable and continuously pivotable to reflect the spectral channels into selected output ports. As such, the inventive WSR apparatus is capable of routing the spectral channels on a channel-by-channel basis and coupling any spectral channel into any one of the output ports. The WSR apparatus of the invention may further employ a polarization diversity scheme, whereby polarization-sensitive effects become inconsequential and insertion loss is minimized. The WSR apparatus of the invention may additionally be equipped with servo-control and channel equalization capabilities.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: July 5, 2011
    Assignee: Capella Photonics, Inc.
    Inventors: Mark H. Garrett, Masud Mansuripur, Jeffrey P. Wilde, Pavel G. Polynkin, Joseph E. Davis