Patents Assigned to pSemi Corporation
  • Patent number: 11923838
    Abstract: Methods and devices to reduce the gate-induced drain/body leakage current (GIDL) generated in FET switch stacks when in OFF state are disclosed. Such devices include inductors as part of bias networks coupled with drain/source terminals and/or body terminals of the transistors within the switch stack. Hybrid approaches where resistors in combination with inductors are implemented as part the bias network are also described.
    Type: Grant
    Filed: June 17, 2022
    Date of Patent: March 5, 2024
    Assignee: PSEMI CORPORATION
    Inventors: Alper Genc, Peter Bacon
  • Patent number: 11923322
    Abstract: An apparatus and method for a frequency based integrated circuit that selectively filters out unwanted bands or regions of interfering frequencies utilizing one or more tunable notch or bandpass filters or tunable low or high pass filters capable of operating across multiple frequencies and multiple bands in noisy RF environments. The tunable filters are fabricated within the same integrated circuit package as the associated frequency based circuitry, thus minimizing R, L, and C parasitic values, and also allowing residual and other parasitic impedance in the associated circuitry and IC package to be absorbed and compensated.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: March 5, 2024
    Assignee: pSemi Corporation
    Inventors: William R. Smith, Jr., Jaroslaw Adamski, Dan William Nobbe, Edward Nicholas Comfoltey, Jingbo Wang
  • Patent number: 11923765
    Abstract: Circuits and methods for protecting a multi-level power converter using no more than two high-voltage FET switches while allowing all or most other power switches to be low-voltage FET switches. Some embodiments provide protective high-voltage top and bottom FETs designed to saturate before the remaining low-power FET switches saturate. Other embodiments may use only low-power FETs for the power switches but provide protective circuits configured to be in an always-ON (conducting) state when in normal power conversion operation, and to quickly switch to an OFF (non-conducting) state in the event of transients or a fault condition. Optionally, one or more of the protective circuits may be used in a controlled manner to limit or block current flow during certain types of fault conditions and/or to limit in-rush current during startup of a power converter.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: March 5, 2024
    Assignee: pSemi Corporation
    Inventor: Gregory Szczeszynski
  • Patent number: 11921149
    Abstract: A switching network includes a switch, a driver for the switch, and a floating-regulator that powers the driver. The floating-regulator includes a shunt that is used only when testing the network. The shunt diverts biasing current so that it does not interfere with a measurement of an electrical property of a switch.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: March 5, 2024
    Assignee: pSemi Corporation
    Inventors: Gregory Szczeszynski, Brian Zanchi
  • Patent number: 11923807
    Abstract: Circuits and methods for improving IC yield during automated test equipment (ATE) calibration of circuit designs which require IDD calibration and use a closed feedback bias circuit, such as amplifier circuits. The circuit designs include bias branch/active circuit architectures where the active circuit includes one or more active devices. An example first embodiment uses an on-chip calibration switch between the on-chip grounds of a bias network and an active circuit comprising an amplifier. During calibration of the active circuit by the ATE, the calibration switch is closed, and after completion of calibration, the calibration switch is opened. An example second embodiment utilizes an active on-chip feedback loop calibration circuit to equalize voltages between the on-chip grounds of a bias network and an active circuit comprising an amplifier during calibration of the active circuit.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: March 5, 2024
    Assignee: pSemi Corporation
    Inventors: Parvez H. Daruwalla, Yucheng Tong, Jonathan James Klaren
  • Patent number: 11916475
    Abstract: Subject matter disclosed herein may relate to semiconductor devices, and may more particularly relate to power semiconductor packages, for example.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: February 27, 2024
    Assignee: PSEMI CORPORATION
    Inventor: David Giuliano
  • Patent number: 11909316
    Abstract: Circuits and methods for protecting the switches of charge pump-based power converters from damage if a VOUT short circuit event occurs and/or if VIN falls rapidly with respect to VX or VOUT. A general embodiment includes a VX Detection Block coupled to the core block of a power converter. The VX Detection Block is coupled to VX and to a control circuit that disables operations of an associated converter circuit upon detection of large, rapid falls in VX during the dead time between clock phase signals, thereby prevent damaging current spikes. Some embodiments include a VIN Detection Block configured to detect and prevent excessive in-rush current due to rapidly falling values of VIN to the power converter. The VIN Detection Block is coupled to VIN, and to VX or VOUT in some embodiments, and to a control circuit to that disables operation of an associated converter circuit.
    Type: Grant
    Filed: October 18, 2022
    Date of Patent: February 20, 2024
    Assignee: pSemi Corporation
    Inventor: Antony Christopher Routledge
  • Patent number: 11908844
    Abstract: This disclosure relates to embodiments that include an apparatus that may comprise a first layer including a first plurality of active devices, a second layer including a second plurality of active devices, and/or a third layer including a plurality of passive devices and disposed between the first and the second layers. An active device of the first plurality of active devices and an active device of the second plurality of active devices may influence a state of charge of a passive device of the plurality of passive devices.
    Type: Grant
    Filed: October 26, 2021
    Date of Patent: February 20, 2024
    Assignee: pSemi Corporation
    Inventor: David Giuliano
  • Patent number: 11901816
    Abstract: A step-up power-converter has stack nodes, each of which connects to a stack switch and to a pump capacitor to form a switched-capacitor network. Among the stack nodes are first and second stack-nodes. The second stack-node drives a particular stack switch from the plurality of stack switches. When all of the stack switches are open, the first voltage causes the first stack-node to have a first stack-node voltage and causes the second stack-node to have a second stack-node voltage that is less than the first stack-node voltage. During the first state, the second stack-node voltage is insufficient to drive the particular stack-switch. During the second state, the second stack-node voltage is sufficient to drive the particular stack-switch. Causing the switched-capacitor network to transition from the first state to the second state includes, among other things, causing the second stack-node voltage to become sufficient to drive the particular stack-switch.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: February 13, 2024
    Assignee: pSemi Corporation
    Inventors: Aichen Low, Gregory Szczeszynski, Oscar Blyde
  • Patent number: 11901817
    Abstract: Transient or fault conditions for a switched capacitor power converter are detected by measuring one or more of internal voltages and/or currents associated with switching elements (e.g., transistors) or phase nodes, or voltages or currents at terminals of the converter, and based on these measurements detect that a condition has occurred when the measurements deviate from a predetermined range. Upon detection of the condition fault control circuitry alters operation of the converter, for example, by using a high voltage switch to electrically disconnect at least some of the switching elements from one or more terminals of the converter, or by altering timing characteristics of the phase signals.
    Type: Grant
    Filed: July 7, 2023
    Date of Patent: February 13, 2024
    Assignee: pSemi Corporation
    Inventors: Aichen Low, David M. Giuliano, Gregory Szczeszynski, Jeff Summit, Oscar Blyde
  • Patent number: 11901459
    Abstract: A method and apparatus are disclosed for use in improving gate oxide reliability of semiconductor-on-insulator (SOI) metal-oxide-silicon field effect transistor (MOSFET) devices using accumulated charge control (ACC) techniques. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one embodiment, a circuit includes a MOSFET, operating in an accumulated charge regime, and means for controlling the accumulated charge, operatively coupled to the SOI MOSFET. A first determination is made of the effects of an uncontrolled accumulated charge on time dependent dielectric breakdown (TDDB) of the gate oxide of the SOI MOSFET. A second determination is made of the effects of a controlled accumulated charge on TDDB of the gate oxide of the SOI MOSFET.
    Type: Grant
    Filed: December 13, 2021
    Date of Patent: February 13, 2024
    Assignee: pSemi Corporation
    Inventors: Michael A. Stuber, Christopher N. Brindle, Dylan J. Kelly, Clint L. Kemerling, George P. Imthurn, Robert B. Welstand, Mark L. Burgener, Alexander Dribinsky, Tae-Youn Kim
  • Patent number: 11901818
    Abstract: An apparatus includes first and second pluralities of switches, a controller for controlling these switches, gate-drivers for driving switches from the first plurality of switches, and first and second terminals configured for coupling to corresponding first and second external circuits at corresponding first and second voltages. During operation, the controller causes the first plurality of switches to transition between states. These transitions result in the second voltage being maintained at a value that is a multiple of the first voltage. The controller also causes the second plurality of switches to transition between states. These transitions resulting in capacitors being coupled or decoupled from the second voltage. The gate drivers derive, from the capacitors, charge for causing a voltage that enables switches from the first plurality of switches to be driven.
    Type: Grant
    Filed: October 16, 2023
    Date of Patent: February 13, 2024
    Assignee: pSemi Corporation
    Inventors: David Giuliano, Gregory Szczeszynski, Raymond Barrett, Jr.
  • Publication number: 20240047985
    Abstract: Briefly, example architectures and/or circuit topologies are disclosed herein that may be implemented, in whole or in part, to facilitate and/or support one or more operations and/or techniques for battery management infrastructure, such as for use with one or more power converters, which may include, for example, one or more switched-capacitor power converters.
    Type: Application
    Filed: October 4, 2023
    Publication date: February 8, 2024
    Applicant: pSemi Corporation
    Inventor: David GIULIANO
  • Patent number: 11894809
    Abstract: Methods and devices for amplifying an input RF signal according to at least two gain-states is described. According to one aspect, a multi gain amplifier circuit including a low noise amplifier having a stack of transistors is used for amplification of the input RF signal. When switching from a low gain-state to a high gain-state, the drain-to-source voltage of the output transistor of the stack is increased to affect region of operation of the output transistor, and thereby reduce non-linearity at the output of the amplifier. When switching from the high gain-state to the low gain-state, the drain-to-source voltage of the input transistor of the stack is increased to affect region of operation of the input transistor, and thereby reduce non-linearity at the output of the amplifier.
    Type: Grant
    Filed: May 5, 2022
    Date of Patent: February 6, 2024
    Assignee: pSemi Corporation
    Inventors: Rong Jiang, Haopei Deng
  • Patent number: 11894840
    Abstract: Circuits and methods for determining the characteristics of swappable pins in a peripheral in a 1-Wire or similar single-conductor system, thereby allowing each one of two pins to be either an I/O pin (connected to an I/O line) or a CAP pin (connected to a storage capacitor). Embodiments may utilize a hybrid buffer circuit that utilizes an effectively bi-directional PFET pull-up device coupled between the swappable pins A and B. Two open-drain NFETs pull-down devices are used, one on either side of the PFET and coupled to a respective pin (A or B), but with only one NFET being selected to be operable based on pin-determination flag signals from the pin detection circuitry. Such a hybrid buffer circuit would consume significantly less IC area than two complete conventional buffers, resulting in less leakage and less yield loss.
    Type: Grant
    Filed: April 1, 2022
    Date of Patent: February 6, 2024
    Assignee: pSemi Corporation
    Inventors: Robert Mark Englekirk, Keith Rampmeier, Arpita Moghe Chadha
  • Publication number: 20240039401
    Abstract: An apparatus includes first and second pluralities of switches, a controller for controlling these switches, gate-drivers for driving switches from the first plurality of switches, and first and second terminals configured for coupling to corresponding first and second external circuits at corresponding first and second voltages. During operation, the controller causes the first plurality of switches to transition between states. These transitions result in the second voltage being maintained at a value that is a multiple of the first voltage. The controller also causes the second plurality of switches to transition between states. These transitions resulting in capacitors being coupled or decoupled from the second voltage. The gate drivers derive, from the capacitors, charge for causing a voltage that enables switches from the first plurality of switches to be driven.
    Type: Application
    Filed: October 16, 2023
    Publication date: February 1, 2024
    Applicant: pSemi Corporation
    Inventors: David GIULIANO, Gregory SZCZESZYNSKI, Raymond BARRETT, JR.
  • Patent number: 11886228
    Abstract: Circuits and methods enabling common control of an agent device by two or more buses, particularly MIPI RFFE serial buses. In essence, the invention provides flagging signals designating completed register write operations to denote which of two registers are active, such that synchronization is accomplished in a clock-free manner. One embodiment includes at least two decoders, each including a common register and a bus (S/P) decoder coupled to a respective bus and to the common register. The S/P decoder asserts a write-complete signal when a write operation to a corresponding common register is completed. A multiplexer has at least two selectable input bus ports coupled to the common registers within the at least two decoders. A selection circuit selects an input bus port of the multiplexer in response to the assertion of a last write-complete signal from the S/P decoders.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: January 30, 2024
    Assignee: pSemi Corporation
    Inventors: Poojan Wagh, David A. Podsiadlo
  • Patent number: 11888468
    Abstract: An RF switch to controllably withstand an applied RF voltage Vsw, or a method of fabricating such a switch, which includes a string of series-connected constituent FETs with a node of the string between each pair of adjacent FETs. The method includes controlling capacitances between different nodes of the string to effectively tune the string capacitively, which will reduce the variance in the RF switch voltage distributed across each constituent FET, thereby enhancing switch breakdown voltage. Capacitances are controlled, for example, by disposing capacitive features between nodes of the string, and/or by varying design parameters of different constituent FETs. For each node, a sum of products of each significant capacitor by a proportion of Vsw appearing across it may be controlled to approximately zero.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: January 30, 2024
    Assignee: pSemi Corporation
    Inventor: Robert Mark Englekirk
  • Patent number: 11881782
    Abstract: Multi-level DC-to-DC converter circuits and methods that permit a full range of output voltages, including near and at zone boundaries. Embodiments alternate among adjacent or near-by zones, operating in a first zone for a selected time and then in a second zone for a selected time. Embodiments may include a parallel capacitor voltage balancing circuit that connects a capacitor to a source voltage to charge that capacitor, or couples two or more capacitors together to transfer charge, all under the control of real-time capacitor voltage measurements. Embodiments may include a lossless voltage balancing solution where out-of-order state transitions are allowed, thus increasing or decreasing the voltage across specific capacitors to prevent voltage overstress on the converter main switches. Restrictions may be placed on the overall sequence of state transitions to reduce or avoid transition state toggling, allowing each capacitor an opportunity to have its voltage steered as necessary for balancing.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: January 23, 2024
    Assignee: pSemi Corporation
    Inventors: Gary Chunshien Wu, David M. Giuliano, Gregory Szczeszynski
  • Patent number: 11881828
    Abstract: A multi-gain LNA with inductive source degeneration is presented. The inductive source degeneration is provided via a tunable degeneration network that includes an inductor in parallel with one or more switchable shunting networks. Each shunting network includes a shunting capacitor that can selectively be coupled in parallel to the inductor. A capacitance of the shunting capacitor is calculated so that a combined impedance of the inductor and the shunting capacitor at a narrowband frequency of operation is effectively an inductance. The inductance is calculated according to a desired gain of the LNA. According to one aspect, the switchable shunting network includes a resistor in series connection with the shunting capacitor to provide broadband frequency response stability of the tunable degeneration network. According to another aspect, the LNA includes a plurality of selectable branches to further control gain of the LNA.
    Type: Grant
    Filed: February 14, 2022
    Date of Patent: January 23, 2024
    Assignee: pSemi Corporation
    Inventors: Jing Li, Emre Ayranci, Miles Sanner