Patents Assigned to Regents of the University of Michigan
  • Patent number: 11167999
    Abstract: The present disclosure provides a biomimetic composite that includes a plurality of nanostructures each having at least one axial geometry region comprising an inorganic material. The nanostructures may be a plurality of substantially aligned (e.g., in a vertical orientation) axial geometry nanowires comprising zinc oxide or alternatively hedgehog-shaped nanoparticles with needles comprising zinc oxide. A polymeric matrix disposed in void regions defined between respective nanostructures of the plurality of nanostructures. The biomimetic composite exhibits a viscoelastic figure of merit (VFOM) of greater than or equal to about 0.001 up to about 0.6 or greater. Methods of making such biomimetic composites are also provided.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: November 9, 2021
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Nicholas A. Kotov, Bongjun Yeom
  • Publication number: 20210344123
    Abstract: A two-port antenna system is proposed that uses a polarization-independent spatial power divider to align the beams from two orthogonally oriented dual-polarized feeds. This antenna system is compatible with fully polarimetric radar and provides high port isolation. It simultaneously provides a common aperture for transmit and receive to minimize radar parallax. The spatial power divider is designed using a combination of all-dielectric metamaterial techniques and the concept of miniaturized-element frequency selective surfaces, and is fabricated on a silicon wafer using standard microfabrication technology.
    Type: Application
    Filed: April 23, 2021
    Publication date: November 4, 2021
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Adib NASHASHIBI, Tanner DOUGLAS, Kamal SARABANDI
  • Publication number: 20210340011
    Abstract: A method of synthesizing a precursor for making a polymer, glass, or ceramic material is provided. The method includes reacting OPCl3 with NH3 or MNH2, where M is Li, Na, K, Mg, Ca, Ba, or combinations thereof, to form O?P(NH2)3. The method then includes either: (i) reacting the O?P(NH2)3 with M1NH2, where M1 is Li, Na, K, Mg, Ca, Ba, or combinations thereof, to form the precursor; or (ii) heating the O?P(NH2)3 to form a branched or cyclomeric compound, and reacting the branched or cyclomeric compound with M1NH2, where M1 is Li, Na, K, Mg, Ca, Ba, or combinations thereof, to form the precursor. The precursor is an oligomer or a polymer. Uses for the precursor and the polymer, glass, or ceramic material as binders, sintering aids, adhesives, and electrolytes in battery components are also provided.
    Type: Application
    Filed: August 30, 2019
    Publication date: November 4, 2021
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Richard M. LAINE, Eleni TEMECHE, Xinyu ZHANG
  • Publication number: 20210341422
    Abstract: An integrated microfluidic photoionization detector (PID) is provided including a microfluidic ionization chamber a microfluidic ultraviolet radiation chamber that is configured to generate ultraviolet photons. An ultrathin transmissive window is disposed between the microfluidic ionization chamber and the microfluidic ultraviolet radiation chamber that permits the ultraviolet photons to pass from the microfluidic ultraviolet radiation chamber into the microfluidic ionization chamber. Detection systems for one or more VOC analytes are also provided that include a gas chromatography (GC) unit including at least one gas chromatography column and an integrated microfluidic photoionization detector (PID) disposed downstream of the gas chromatography (GC) unit.
    Type: Application
    Filed: October 2, 2019
    Publication date: November 4, 2021
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Xudong FAN, Hongbo ZHU, Katsuo KURABAYASHI
  • Publication number: 20210344306
    Abstract: An amplifier is presented with a sample and average common mode feedback resistor. The amplifier circuit includes a feedback capacitor and a feedback resistor in parallel with the feedback capacitor, where the feedback capacitor and the feedback resistor form part of the negative feedback path for the amplifier. Of note, the feedback resistor is comprised of a low pass filter in series with a switched capacitor resistor, such that the low pass filter is electrically coupled to the output of the amplifier circuit and the switched capacitor resistor is electrically coupled to the inverting input of the amplifier circuit. The amplifier circuit further includes a control circuit interfaced with switches of the switched capacitor resistor. The high pass corner of the switched capacitor resistor is preferably lower than corner of the low pass filter.
    Type: Application
    Filed: April 29, 2021
    Publication date: November 4, 2021
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Rohit ROTHE, Sechang OH, Kyojin CHOO, Seok Hyeon JEONG, Dennis SYLVESTER, David T. BLAAUW
  • Patent number: 11154254
    Abstract: Systems and methods for predicting and/or detecting cardiac events based on real-time biomedical signals are discussed herein. In various embodiments, a machine learning algorithm may be utilized to predict and/or detect one or more medical conditions based on obtained biomedical signals. For example, the systems and methods described herein may utilize ECG signals to predict and detect cardiac events. In various embodiments, patterns identified within a signal may be assigned letters (i.e., encoded as distributions of letters). Based on the known morphology of a signal, states within the signal may be identified based on the distribution of letters in the signal. When applied in the in-vehicle environment, drivers or passengers within the vehicle may be alerted when an individual within the vehicle is, or is about to, experience a cardiac event.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: October 26, 2021
    Assignees: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC., THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Kayvan Najarian, Hendrikus Derksen, Zhi Li, Jonathan Gryak, Pujitha Gunaratne
  • Patent number: 11156749
    Abstract: The present disclosure provides a structure comprising a polymeric structure or composite material having a surface patterned via methods employing a kirigami-type technique. The patterned surface may define a first row of at least two discontinuous cuts and a second row of at least two discontinuous cuts offset from the first row. The first row and the second row cooperate to define a plurality of bridge structures therebetween, making the nanocomposite is stretchable in at least one direction. Methods of making such patterned structures via kirigami techniques, for example, via photolithography top-down cutting are also provided. Devices incorporating such kirigami-patterned polymeric structures are also provided, such as strain tunable optic devices.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: October 26, 2021
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Nicholas A. Kotov, Terry Shyu, Lizhi Xu
  • Publication number: 20210328087
    Abstract: To reach high efficiencies, thermophotovoltaic cells must utilize the broad spectrum of a radiative thermal source. One promising approach to overcome this challenge is to have low-energy photons reflected and reabsorbed by the thermal emitter, where their energy can have another chance at contributing toward photogeneration in the cell. However, current methods for photon recuperation are limited by insufficient bandwidth or parasitic absorption, resulting in large efficiency losses relative to theoretical limits. This work demonstrates nearly perfect reflection of low-energy photons (˜99%) by embedding an air layer within the TPV cell. This result represents a four-fold reduction in parasitic absorption relative to existing TPV cells. As out-of-band reflectance approaches unity, TPV efficiency becomes nearly insensitive to cell bandgap and emitter temperature. Accessing this regime unlocks a range of possible materials and heat sources that were previously inaccessible to TPV energy conversion.
    Type: Application
    Filed: April 16, 2021
    Publication date: October 21, 2021
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Tobias BURGER, Byungjun LEE, Dejiu FAN, Andrej LENERT, Stephen R. FORREST
  • Patent number: 11147885
    Abstract: Provided herein are small molecules that bind to ASH1L and inhibit ASH1L activity, and methods of use thereof for the treatment of disease, including acute leukemia, solid cancers and other diseases dependent on activity of ASH1L.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: October 19, 2021
    Assignee: The Regents of the University of Michigan
    Inventors: Jolanta Grembecka, Szymon Klossowski, Jing Deng, Tomasz Cierpicki, Hao Li, Hongzhi Miao, Trupta Purohit, EunGi Kim
  • Patent number: 11148998
    Abstract: This invention is in the field of medicinal chemistry. In particular, the invention relates to a new class of small-molecules having a dimethyl-nonatetraenyl-trimethyl-cyclohexyl structure useful as therapeutics for the treatment of subjects suffering from disorders characterized by abnormal proliferation and/or abnormal differentiation of cells, in particular of cells of which the growth and differentiation is sensitive to the actions of retinoids.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: October 19, 2021
    Assignee: The Regents of the University of Michigan
    Inventors: James Varani, Hollis Showalter, Andy White, Kent J. Johnson
  • Publication number: 20210315963
    Abstract: The present disclosure provides a method of treating NAFLD, NASH, and atherosclerosis, comprising administering glycine-containing tripeptide molecule, or a pharmaceutically acceptable salt thereof to a subject.
    Type: Application
    Filed: August 9, 2019
    Publication date: October 14, 2021
    Applicants: DIAPIN THERAPEUTICS, LLC, THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Oren ROM, Jifeng ZHANG, Ying ZHAO, Yuquing Eugene CHEN
  • Patent number: 11145834
    Abstract: High efficiency multi-junction small-molecule organic photovoltaic devices and methods of fabricating the same are disclosed herein. Design considerations for improving spectral coverage and light-harvesting efficiency using the multi-junction devices are also disclosed.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: October 12, 2021
    Assignee: The Regents of the University of Michigan
    Inventors: Stephen R. Forrest, Xiaozhou Che, Xin Xiao
  • Patent number: 11143158
    Abstract: A contactless magnetic support for a marine hydrokinetic energy harvesting system. The marine hydrokinetic energy harvesting system employing flow induced oscillations. The contactless magnetic support comprising a first ferromagnetic core; and a second ferromagnetic element being magnetically positioned relative to the first ferromagnetic core, the second ferromagnetic element being smaller compared to the first ferromagnetic core thereby inducing a non-homogenous magnetic field caused by dimensional disparity.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: October 12, 2021
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Michael M. Bernitsas, Nikolas Xiros
  • Patent number: 11141086
    Abstract: Cerenkov Emission (CE) during external beam radiation therapy (EBRT) from a linear accelerator (Linac) has been demonstrated as a useful tool for radiotherapy quality assurance and potentially other applications for online tracking of tumors during treatment. However, an overlooked area is the molecular probing of the cancer status during delivery mainly due to the limited detection sensitivity of CE and lack of flexible tools to fit into an already complex treatment delivery environment. Silicon photomultiplier (SiPM) can be used for low light detection due to their extreme sensitivity that mirrors photomultiplier tubes and yet has a form factor that is similar to silicon photodiodes, allowing for improved flexibility in device design. This work assesses the feasibility of using SiPMs to detect CE, interrogate the tumor molecular status during EBRT, and contrast its performance with silicon photodiodes (PDs) available commercially.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: October 12, 2021
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Issam I. El Naqa, Ibrahim Oraiqat, Roy Clarke, Nicholas Cucinelli, Samuel Debruin
  • Patent number: 11145861
    Abstract: Disclosed are methods for pre-conditioning or pre-treating the surface of a metal (e.g., lithium) electrode such that the cycle life and efficiency of the electrode within an electrochemical cell are improved through the prevention of dendrite growth. The pretreatment process includes the use of an alternating current to modify the surface properties of the metal electrode, such that a more uniform flux of metal ions is transferred across the electrode-electrolyte Interface in subsequent electrodeposition and electrodissolution processes. As a result, an electrode treated with such a process exhibits improved performance and durability, including markedly lower overpotentials and largely improved metal (e.g., lithium) retention in strip plate tests as compared with untreated electrodes.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: October 12, 2021
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Neil P. Dasgupta, Kevin N. Wood, Kuan-Hung Chen, Eric Kazyak
  • Patent number: 11145046
    Abstract: A method is presented for detecting occlusions on a color camera. The method includes: capturing an image of a scene using the camera; analyzing intensity of electromagnetic radiation forming the at least one image, where the intensity of the electromagnetic radiation is analyzed across the electromagnetic spectrum; detecting an occlusion on a lens of the camera based on variation of intensity of the electromagnetic radiation across the electromagnetic spectrum; and tagging the image with an indicator of the occlusion, where the tagging occurs in response to detecting an occlusion on the camera.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: October 12, 2021
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Sridhar Lakshmanan, Christopher Bargman
  • Publication number: 20210314159
    Abstract: A computer includes a processor and a memory, the memory storing instructions executable by the processor to collect a digital image that includes a plurality of pixels with a first sensor, input a reference data string, a key data string, and a set of collected data from a second sensor into a permutation generator that outputs a watermark data string, and embed the watermark data string in the digital image at specified pixels in the plurality of pixels.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 7, 2021
    Applicants: Ford Global Technologies, LLC, THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: John Moore, Francis Obiagwu, Hafiz Malik
  • Patent number: 11136734
    Abstract: A sound barrier system for use in mitigating noise having an origami sheet or origami-inspired mechanism that can use folding to change configuration and lattice topology; and a plurality of cylindrical inclusions disposed on top of the origami sheet. The plurality of cylindrical inclusions being periodically arranged such that folding kinematics of the origami sheet induces reconfiguration of the periodicity of the plurality of cylindrical inclusions and associated wave blocking of the noise.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: October 5, 2021
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Manoj Thota, Suyi Li, Kon-Well Wang
  • Patent number: 11137394
    Abstract: Provided herein are systems and methods for assays. In particular, provided herein are systems and methods for performing high throughput immunoassays. Embodiments of the present disclosure provide multiplex capable LSPR immunoassays that meet a need for rapid (e.g., near real time), accurate immunoassays (e.g. for use in beside diagnostics). The LSPR assays are as accurate as existing ELISA assays but provide the advantage of increased speed and multiplex capability. In addition, the LSPR immunoassays are able to analyze small volumes of complex patient samples (e.g., serum).
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: October 5, 2021
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Pengyu Chen, Katsuo Kurabayashi, Timothy T. Cornell, Thomas P. Shanley, Meng Ting Chung, Yujing Song, Walker M. McHugh
  • Patent number: 11135454
    Abstract: A histotripsy therapy system configured for the treatment of brain tissue is provided, which may include any number of features. In one embodiment, the system includes an ultrasound therapy transducer, a drainage catheter, and a plurality of piezoelectric sensors disposed in the drainage catheter. The ultrasound therapy is configured to transmit ultrasound pulses into the brain to generate cavitation that liquefies a target tissue in the brain. The drainage catheter is configured to detect the ultrasound pulses. An aberration correction algorithm can be executed by the system based on the ultrasound pulses measured by the drainage catheter to automatically correct for an aberration effect caused by the ultrasound pulses passing through a skullcap of the patient.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: October 5, 2021
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Zhen Xu, Jonathan Sukovich, Aditya S. Pandey, Charles A. Cain, Hitinder S. Gurm