Patents Assigned to Renesas Technology
  • Patent number: 7853776
    Abstract: A bytecode accelerator which translates stack-based intermediate language (bytecodes) into register-based CPU instructions transfers plural pieces of internal information from a register file of a CPU to the bytecode accelerator by means of an internal transfer bus between the bytecode accelerator and the CPU and an input selection logic of the bytecode accelerator when the bytecode accelerator is started and transfers plural pieces of internal information in the bytecode accelerator to the register file of the CPU by means of the internal transfer bus, an output selector and an output selector selection logic of the bytecode accelerator when the bytecode accelerator ends its operation in transition between hardware processing and software processing by software virtual machine.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: December 14, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Tetsuya Yamada, Naohiko Irie
  • Publication number: 20100313080
    Abstract: Provided is a CAN system that can generate an error signal without requiring hardware for generating an error signal to be connected to a bus. A protocol processing part within a CAN controller incorporates error data into receive data or send data, based on error data information stored in a register.
    Type: Application
    Filed: July 29, 2010
    Publication date: December 9, 2010
    Applicant: Renesas Technology Corp.
    Inventors: Toshiyuki UEMURA, Yasuyuki INOUE
  • Publication number: 20100308858
    Abstract: A memory cell mat is divided into a plurality of entries, and an arithmetic logic unit is arranged corresponding to each entry. Between the entries and the corresponding arithmetic logic units, arithmetic/logic operation is executed in bit-serial and entry-parallel manner. Where parallel operation is not very effective, data is transferred in entry-serial and bit-parallel manner to a group of processors provided at a lower portion of the memory mat. In this manner, a large amount of data can be processed at high speed regardless of the contents of operation or data bit width.
    Type: Application
    Filed: August 16, 2010
    Publication date: December 9, 2010
    Applicant: Renesas Technology Corp.
    Inventors: Hideyuki NODA, Kazunori Saitoh, Kazutami Ariomoto, Katsumi Dosaka
  • Patent number: 7847500
    Abstract: Control technique of a synchronous motor capable of suppressing rotation pulsation caused by individual difference without complicating control algorithm is provided. A pulsation generator superimposing a pulsation component anticipated in advance to a current command for the synchronous motor and a correction current generator superimposing a correction signal substantially having an average value of zero to the current command are provided in a synchronous motor control device. By this configuration, the correction signal suppressing a distortion component is superimposed to a value of the current command with a simplified control configuration. Torque pulsation is suppressed by determining the correction signal from difference between a detection current and a command current.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: December 7, 2010
    Assignee: Renesas Technology Corporation
    Inventors: Yoshitaka Iwaji, Junnosuke Nakatsugawa, Yasuhiko Kokami, Minoru Kurosawa
  • Patent number: 7843066
    Abstract: The present invention provides a semiconductor device capable of preventing occurrence of cracking and the like, taking a large area, where wiring and the like that function as elemental devices can be arranged, within a plurality of interlayer insulation films, and reducing production cost. The semiconductor device according to the present invention has a low dielectric constant film having a dielectric constant of not less than 2.7. In the low dielectric constant film and the like, materials (e.g., a first dummy pattern, a second dummy pattern) with a larger hardness than that of the low dielectric constant film are formed at a part under a pad part.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: November 30, 2010
    Assignee: Renesas Technologies Corporation
    Inventor: Kazuo Tomita
  • Publication number: 20100295461
    Abstract: A driving circuit supplies a suppression current (I4) which reduces a decrease in a driving current (Idrive) immediately after occurrence of an overshoot at the time of the rise of the driving current (Idrive) to a laser diode (1). The driving circuit draws a suppression current (I5) which reduces an increase in the driving current (Idrive) immediately after occurrence of an undershoot at the time of the fall of the driving current (Idrive) from the driving current (Idrive).
    Type: Application
    Filed: July 30, 2010
    Publication date: November 25, 2010
    Applicant: Renesas Technology Corp.
    Inventors: Tsuyoshi Horiuchi, Takehiko Umeyama
  • Publication number: 20100285651
    Abstract: To manufacture in high productivity a semiconductor device capable of securely achieving element isolation by a trench-type element isolation and capable of effectively preventing potentials of adjacent elements from affecting other nodes, a method of manufacturing the semiconductor device includes: a step of forming a first layer on a substrate; a step of forming a trench by etching the first layer and the substrate; a step of thermally oxidizing an inner wall of the trench; a step of depositing a first conductive film having a film thickness equal to or larger than one half of the trench width of the trench on the substrate including the trench; a step of removing a first conductive film from the first layer by a CMP method and keeping the first conductive film left in only the trench; a step of anisotropically etching the first conductive film within the trench to adjust the height of the conductive film to become lower than the height of the surface of the substrate; a step of depositing an insulating fil
    Type: Application
    Filed: July 21, 2010
    Publication date: November 11, 2010
    Applicant: Renesas Technology Corp.
    Inventors: Takashi KUROI, Katsuyuki HORITA, Masashi KITAZAWA, Masato ISHIBASHI
  • Publication number: 20100270633
    Abstract: Ferromagnetic layers have magnetizations oriented to such directions as to cancel each other, so that the net magnetization of the ferromagnetic layers is substantially zero. That is, the ferromagnetic layers are exchange-coupled with a nonmagnetic layer interposed therebetween, thereby forming an SAF structure. Since the net magnetization of the ferromagnetic layers forming the SAF structure is substantially zero, the magnetization of a recording layer is determined by the magnetization of a ferromagnetic layer. Therefore, the ferromagnetic layer is made of a CoFeB alloy having high uniaxial magnetic anisotropy, and the ferromagnetic layers are made of a CoFe alloy having a high exchange-coupling force.
    Type: Application
    Filed: July 6, 2010
    Publication date: October 28, 2010
    Applicant: Renesas Technology Corp.
    Inventors: Takashi Takenaga, Takeharu Kuroiwa, Taisuke Furukawa, Masakazu Taki
  • Publication number: 20100270365
    Abstract: The present invention relates to a solder paste composition used for precoating an electrode surface with solder. A first solder paste composition is contains a solder powder and a flux, and a metallic powder made by metallic species different from metallic species constituting the solder powder and metallic species constituting the electrode surface in a rate of 0.1% by weight or more and 20% by weight or less based on a total amount of the solder powder. When these solder paste compositions are evenly applied onto an electronic circuit substrate for precoating, such a solder that does not generate any swollen portion, solder-lacking portion and variability in a height thereof can be formed irrespective of a shape of a pad.
    Type: Application
    Filed: July 7, 2010
    Publication date: October 28, 2010
    Applicants: Harima Chemicals, Inc., Renesas Technology Corp.
    Inventors: Yoichi KUKIMOTO, Kazuki Ikeda, Hitoshi Sakurai, Nobuhiro Kinoshita, Masaki Nakanishi
  • Patent number: 7821829
    Abstract: A transistor is arranged for electrically isolating a sense amplifier formed of a thin film transistor from a data line electrically coupled to the sense amplifier. When a write driver drives the data line, a control signal is applied to isolate the data line from the sense amplifier.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: October 26, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Taku Ogura, Tadaaki Yamauchi, Takashi Kubo
  • Publication number: 20100265752
    Abstract: A semiconductor storage device includes a memory cell array, a plurality of word lines, a plurality of bit lines, a first gate wiring element 3a, 3b, a second gate wiring element 3c, 3d, a first connector 5a, 5b, and a second connector 5c, 5d. Each memory cell 10 has first and second sets having a driver transistor 11, a load transistor 12, and an access transistor 13. The word lines are arranged in parallel to each other along a first direction. The bit lines are arranged in parallel to each other along a second direction perpendicular to the first direction. The first gate wiring element comprises a gate electrode of the first driver transistor and the first load transistor, and has a rectangular shape having straight line on opposite sides. The second gate wiring element comprises a gate electrode of the access transistor and has a rectangular shape having straight line on opposite sides.
    Type: Application
    Filed: June 30, 2010
    Publication date: October 21, 2010
    Applicant: Renesas Technology Corp.
    Inventors: Hidemoto TOMITA, Shigeki Ohbayashi, Yoshiyuki Ishigaki
  • Patent number: 7816207
    Abstract: A manufacturing method of a semiconductor device includes a first electrode formation step of forming a control gate electrode above a surface of a semiconductor substrate with a control gate insulating film interposed between the control gate electrode and the semiconductor substrate, a step of forming a storage node insulating film on the surface of the semiconductor substrate, and a second electrode formation step of forming a memory gate electrode on a surface of the storage node insulating film. The second electrode formation step includes a step of forming a memory gate electrode layer on the surface of the storage node insulating film, a step of forming an auxiliary film, having an etching rate slower than that of the memory gate electrode layer, on a surface of the memory gate electrode layer, and a step of performing anisotropic etching on the memory gate electrode layer and the auxiliary film.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: October 19, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Tsutomu Okazaki, Motoi Ashida, Hiroji Ozaki, Tsuyoshi Koga, Daisuke Okada
  • Patent number: 7816204
    Abstract: A semiconductor device, having a memory cell region and a peripheral circuit region, includes an insulating film, having an upper surface, formed on a major surface of a semiconductor substrate to extend from the memory cell region to the peripheral circuit region. A capacitor lower electrode assembly is formed in the memory cell region to upwardly extend to substantially the same height as the upper surface of the insulating film on the major surface of the semiconductor substrate. Additionally, the lower electrode assembly includes first and second lower electrodes that are adjacent through the insulating film. A capacitor upper electrode is formed on the capacitor lower electrode through a dielectric film, to extend onto the upper surface of the insulating film. The capacitor lower electrode includes a capacitor lower electrode part having a top surface and a bottom surface.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: October 19, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Yoshinori Tanaka, Masahiro Shimizu, Hideaki Arima
  • Patent number: 7816757
    Abstract: High density mounting and power source sharing are achieved by a digital semiconductor element and an analog semiconductor element provided in a common semiconductor device. A power layer for analog operation is connected to one end of an EBG (Electromagnetic Band Gap) layer, a power layer for digital operation is connected to the other end of the EBG layer, ground terminals for the respective elements are connected to a common ground layer, and a ground layer for separating the power layer for analog operation and the EBG layer from each other is disposed between the power layer for analog operation and the EBG layer. Thereby, high density mounting is achieved along with reducing interference of the power source to an analog chip.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: October 19, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Hideki Osaka, Yutaka Uematsu, Eiichi Suzuki
  • Patent number: 7818469
    Abstract: In a USB device comprising a plurality of functional modules that includes a control circuit for switching a functional module to be activated from among the functional modules included in the USB device according to a potential level of a power applied from a host connected to the USB device. The control circuit includes: a voltage detector for discriminating a voltage value of power; a switch for controlling powers to be applied to the respective functional modules; and memories for storing descriptors relating to the USB device. The control circuit makes power applied to a functional module to be activated by the switch into ON state according to a discrimination result of the voltage value of the power by the voltage detector, thereby transferring the descriptors stored in the memories to a host.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: October 19, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Yoshinori Mochizuki, Masaharu Ukeda
  • Publication number: 20100261334
    Abstract: A semiconductor device wherein destruction of a sealing ring caused by cracking of an interlayer dielectric film is difficult to occur, as well as a method for manufacturing the semiconductor device, are provided. A first laminate comprises first interlayer dielectric films having a first mechanical strength. A second laminate comprises second interlayer dielectric films having a mechanical strength higher than the first mechanical strength. A first region includes first metallic layers and vias provided within the first laminate. A second region includes second metallic layers and vias provided within the second laminate. When seen in plan, the second region overlaps at least a part of the first region, is not coupled with the first region by vias, and sandwiches the second interlayer dielectric film between it and the first region.
    Type: Application
    Filed: June 23, 2010
    Publication date: October 14, 2010
    Applicant: Renesas Technology Corp.
    Inventors: Hiroyuki CHIBAHARA, Atsushi Ishii, Naoki Izumi, Masahiro Matsumoto
  • Publication number: 20100258948
    Abstract: A semiconductor wafer comprising: a tubular trench formed at a position to form a through-hole electrode of a wafer; an insulating member buried inside the trench and on an upper surface of the trench; a gate electrode film and a metal film formed on an upper surface of the insulating member; a multilevel columnar wiring via formed on an upper surface of the metal film; and an external connection electrode formed electrically connected to the metal film via the multilevel columnar wiring via. In this manner, it is unnecessary to have a new process of dry etching to form a through-hole electrode after thinning the wafer and equipment development. Moreover, introduction of a specific design enables formation of through-hole electrodes with significantly reduced difficulties of respective processes.
    Type: Application
    Filed: June 25, 2010
    Publication date: October 14, 2010
    Applicant: Renesas Technology Corp.
    Inventors: Naotaka Tanaka, Kenji Kanemitsu, Takafumi Kikuchi, Takashi Akazawa
  • Patent number: 7813156
    Abstract: The present invention provides a sense circuit for DRAM memory cell to cover the events that a sense time becomes remarkably longer when a power source voltage is lowered, a sense time under the low voltage condition becomes shorter when temperature rises and a sense time changes to a large extent for fluctuation of processes. The present invention provides the following typical effects. A switch means is provided between the bit line BL and local bit line LBL connected to the memory cells for isolation and coupling of these bit lines. The bit line BL is precharged to the voltage of VDL/2, while the local bit line LBL is precharged to the voltage of VDL. The VDL is the maximum amplitude voltage of the bit line BL. A sense amplifier SA comprises a first circuit including a differential MOS pair having the gate connected to the bit line BL and a second circuit connected to the local bit line LBL for full amplitude amplification and for holding the data.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: October 12, 2010
    Assignees: Renesas Technology Corp., Hitachi ULSI Systems Co., Ltd.
    Inventors: Hiroyuki Mizuno, Takeshi Sakata, Nobuhiro Oodaira, Takao Watanabe, Yusuke Kanno
  • Patent number: 7814343
    Abstract: A semiconductor integrated circuit device which consumes less power and enables real-time processing. The semiconductor integrated circuit device includes thermal sensors which detect temperature and determine whether the detection result exceeds reference values and output the result, and a control block capable of controlling the operations of arithmetic blocks based on the output signals of the thermal sensors. The control block returns to an operation state from a suspended state with an interrupt signal based on the output signals of the thermal sensors and determines the operation conditions of the arithmetic blocks to ensure that the temperature conditions of the arithmetic blocks are satisfied. Thereby, power consumption is reduced and real-time processing efficiency is improved.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: October 12, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Yusuke Kanno, Hiroyuki Mizuno, Naohiko Irie
  • Patent number: 7813710
    Abstract: The present invention is a receiving circuit used for a cellular phone that is reduced in size and can realize low power consumption. In a signal reception circuit that is used in a cellular phone that perform transmission and reception of a plurality of band wireless signals and includes a low-pass filter for removing blockers unnecessary for signal reception, the low-pass filter 104 is composed of a plurality of filters composed of a plurality of different circuit configurations and having a plurality of different pole positions, switching between a filter for blocker removal and a filter configuration with reduced sensitivity degradation is performed by combining a plurality of filters for each signal reception band, and by performing power-off of an unnecessary filter portion in the filter configuration, power consumption is reduced.
    Type: Grant
    Filed: February 23, 2005
    Date of Patent: October 12, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Yusaku Katsube, Akio Yamamoto