Abstract: A motor drive device has a driver circuit generating an output current for a motor and a control circuit controlling the drive circuit. The control circuit, when switching the driver circuit from a PWM-driving state to a linear-driving state, controls the timing of the switching such that the path of the output current does not change between before and after the switching, and in addition, in the middle of the switching, switches the driver circuit to a high-output-impedance state momentarily.
Abstract: Topcoat layer compositions are provided that are applied above a photoresist composition. The compositions find particular applicability to immersion lithography processing.
Abstract: A power supply system for a display panel includes a power supply regulator that regulates a power supply voltage of a display driver of a power supply circuit connected to the display panel, and a protection circuit that protects the display driver against an overvoltage.
Abstract: The semiconductor device can prevent damages on a semiconductor chip even when a soldering material is used for bonding the back surface of the semiconductor chip to the junction plane of a chip junction portion such as an island or a die pad. This semiconductor device includes a semiconductor chip and a chip junction portion having a junction plane that is bonded to the back surface of the semiconductor chip with a soldering material. The junction plane is smaller in size than the back surface of the semiconductor chip. This semiconductor device may further include a plurality of extending portions which extend respectively from the periphery of the junction plane to directions parallel with the junction plane.
Abstract: An inkjet printer head includes: a semiconductor substrate; a vibration diaphragm provided on the semiconductor substrate and capable of vibrating in an opposing direction in which the vibration diaphragm is opposed to the semiconductor substrate; a piezoelectric element provided on the vibration diaphragm; a pressure chamber provided on a side of the vibration diaphragm adjacent to the semiconductor substrate as facing the vibration diaphragm, the pressure chamber being filled with an ink; and a nozzle extending through the vibration diaphragm and communicating with the pressure chamber for ejecting the ink supplied from the pressure chamber.
Abstract: An LED module includes first through third LED chips and two Zener diodes for preventing excessive voltage application to the first and the second LED chips. A first lead includes a mount portion on which the first through third LED chips and the two Zener diodes are mounted. A resin package covers part of the first lead and includes an opening for exposing the three LED chips and two Zener diodes. A single insulating layer bonds the first and second LED chips to the first lead. A single conductive layer bonds the third LED chip and two Zener diodes to the first lead. The Zener diodes are arranged between the first, second LED chips and the third LED chip.
Abstract: A receiving circuit (10) includes an amplifier (15) which amplifies receiving signals (SP, SN) of a piezoelectric sensor (2), and a plurality of transistors (11a, 11b) or (12a, 12b), which are connected in parallel to between one end of the piezoelectric sensor (2) and one end of the amplifier (15), and are turned on with phase shift when switching is performed to receiving operations.
Abstract: The invention provides a layered structure comprising at least two layers: A) a first layer A formed from a composition A comprising a polyurethane; B) a second layer B formed from a composition B comprising at least one compound selected from the group consisting of the following compounds: a) a compound 1 comprising at least one acid group, b) a compound 2 comprising at least one anhydride group, c) a compound 3 comprising at least one primary amine group and/or at least one secondary amine group, and d) a combination thereof; and wherein the compound has a molecular weight or number average molecular weight, each less than 10,000 g/mole.
Type:
Application
Filed:
September 19, 2012
Publication date:
August 14, 2014
Applicants:
Dow Global Technologies LLC, Rohm and Haas Chemicals LLC
Inventors:
Sekhar Sundaram, Debkumar Bhattacharjee, Jozef J. Van Dun, Bradley A. Jacobs, Rajen M. Patel, Alexander Williamson
Abstract: A copolymer composition is provided including a block copolymer having a poly(styrene) block and a poly(silyl acrylate) block; wherein the block copolymer exhibits a number average molecular weight, MN, of 1 to 1,000 kg/mol; and, wherein the block copolymer exhibits a polydispersity, PD, of 1 to 2. Also provided are substrates treated with the copolymer composition.
Type:
Application
Filed:
February 8, 2013
Publication date:
August 14, 2014
Applicant:
ROHM AND HAAS ELECTRONIC MATERIALS LLC
Inventors:
Peter Trefonas, Phillip Hustad, Xinyu Gu, Erin Vogel, Valeriy Ginzburg, Shih-Wei Chang, Daniel Murray
Abstract: A semiconductor device is disclosed. The semiconductor device has a semiconductor chip, an island having an upper surface to which the semiconductor chip is bonded, a lead disposed around the island, a bonding wire extended between the surface of the semiconductor chip and the upper surface of the lead, and a resin package sealing the semiconductor chip, the island, the lead, and the bonding wire, while the lower surface of the island and the lower surface of the lead are exposed on the rear surface of the resin package, and the lead is provided with a recess concaved from the lower surface side and opened on a side surface thereof.
Abstract: A block copolymer formulation is provided including a block copolymer blend including a first poly(acrylate)-b-poly(silyl acrylate) block copolymer; and, a second poly(acrylate)-b-poly(silyl acrylate) block copolymer. Also provided are substrates treated with the block copolymer formulation.
Type:
Application
Filed:
February 8, 2013
Publication date:
August 14, 2014
Applicant:
ROHM AND HAAS ELECTRONIC MATERIALS LLC
Inventors:
Phillip Hustad, Peter Trefonas, Xinyu Gu, Shih-Wei Chang, Valeriy Ginzburg, Erin Vogel, Daniel Murray
Abstract: The present invention is directed to a semiconductor device including a semiconductor substrate, a through hole penetrating the semiconductor substrate, a base film covering the through hole, a conductive layer disposed on the base film, an insulating film formed on the side wall of the through hole, and a conductive material embedded in the through hole via the insulating film, in which the base film has a stepped portion formed by an opening pattern that selectively exposes the conductive layer therethrough into the through hole, and in which the conductive material is connected electrically to the conductive layer through the opening pattern.
Abstract: A copolymer composition is provided including a block copolymer having a poly(acrylate) block and a poly(silyl acrylate) block; wherein the block copolymer exhibits a number average molecular weight, MN, of 1 to 1,000 kg/mol; and, wherein the block copolymer exhibits a polydispersity, PD, of 1 to 2. Also provided are substrates treated with the copolymer composition.
Type:
Application
Filed:
February 8, 2013
Publication date:
August 14, 2014
Applicant:
ROHM AND HAAS ELECTRONIC MATERIALS LLC
Inventors:
Peter Trefonas, Phillip Hustad, Xinyu Gu, Erin Vogel, Valeriy Ginzburg, Shih-Wei Chang, Daniel Murray
Abstract: [Theme] A compact and refined chip resistor, with which a plurality of types of required resistance values can be accommodated readily with the same design structure, was desired. [Solution Means] A chip resistor 10 is arranged to have a resistor network 14 on a substrate. The resistor network 14 includes a plurality of resistor bodies R arrayed in a matrix and having an equal resistance value. A plurality of types of resistance units are respectively arranged by one or a plurality of the resistor bodies R being connected electrically. The plurality of types of resistance units are connected in a predetermined mode using connection conductor films C and fuse films F. By selectively fusing a fuse film F, a resistance unit can be electrically incorporated into the resistor network 14 or electrically separated from the resistor network to make the resistance value of the resistor network 14 the required resistance value.
Abstract: The invention provides an electronic circuit capable of reducing surge voltage while reducing switching loss when a MOSFET is turned off. A capacitor (91) is connected between apart closer to a first power source terminal (31) of a U-phase module (3) in a bus bar (61a) and a part closer to a second power source terminal (32) of the U-phase module (3) in a bus bar (64a). A capacitor (92) is connected between apart closer to a first power source terminal (41) of a V-phase module (4) in a bus bar (62) and a part closer to a second power source terminal (42) of the V-phase module (4) in a bus bar (65). A capacitor (93) is connected between a part closer to a first power source terminal (51) of a W-phase module (5) in a bus bar (63) and a part closer to a second power source terminal (52) of the W-phase module (5) in a bus bar (66).
Abstract: The present invention is directed to a semiconductor device including a semiconductor chip formed with an SiC-IGBT including an SiC semiconductor layer, a first conductive-type collector region formed such that the collector region is exposed on a second surface of the SiC semiconductor layer, a second conductive-type base region formed such that the base region is in contact with the collector region, a first conductive-type channel region formed such that the channel region is in contact with the base region, a second conductive-type emitter region formed such that the emitter region is in contact with the channel region to define a portion of a first surface of the SiC semiconductor layer, a collector electrode connected to the collector region, and an emitter electrode connected to the emitter region, and a MOSFET including a second conductive-type source region electrically connected to the emitter electrode and a second conductive-type drain region electrically connected to the collector electrode, the
Abstract: A process for production of a metal hydride compound MHx, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R1O)xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MHx. R1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R1O)xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.
Type:
Grant
Filed:
March 22, 2011
Date of Patent:
August 12, 2014
Assignees:
Rohm and Haas Company, Dow Global Technologies LLC
Inventors:
Nathan Tait Allen, Robert Butterick, III, Arthur Achhing Chin, Dean Michael Millar, David Craig Molzahn
Abstract: The invention relates to a controlled polymerization process for preparing (meth)acrylate-based AB diblock copolymers with a B block which has a narrow monomodal molecular weight distribution, and an A block which has a broad bimodal molecular weight distribution, and to the use thereof, for example, as a binder in adhesives or sealants.
Type:
Grant
Filed:
October 6, 2009
Date of Patent:
August 12, 2014
Assignees:
Evonik Röhm GmbH, Henkel AG & Co. KGAA
Inventors:
Holger Kautz, Sven Balk, Stephan Fengler, Dorothea Staschik, Christine Miess, Lars Zander, Jens Lueckert, Johann Klein, Thomas Moeller, Volker Erb
Abstract: A reactor for preparing hydrogen cyanide by the Andrussow process is provided. The reactor comprises at least one gas inlet which opens into a gas inlet region, an outlet for the reaction products and a catalyst, wherein at least one mixing element and at least one gas-permeable intermediate layer are within the reactor between the gas inlet region and the catalyst. The mixing element is arranged between the gas inlet region and the gas-permeable intermediate layer. A process for preparing HCN, in the reactor is also provided.
Type:
Grant
Filed:
May 9, 2008
Date of Patent:
August 12, 2014
Assignee:
Evonik Röhm GmbH
Inventors:
Thomas Schaefer, Robert Weber, Udo Gropp, Thomas Mertz