Abstract: The semiconductor device according to the present invention has an n-channel output transistor wherein an input voltage is impressed on a drain, and a pulsed switching voltage that corresponds to a switching drive of the transistor is brought out from a source; a bootstrap circuit for generating a boost voltage enhanced by a predetermined electric potential above the switching voltage; an internal circuit for receiving a supply of the boost voltage to generate a switching drive signal, and supplying the signal to a gate of the output transistor; an overvoltage protection circuit for monitoring an electric potential difference between the switching voltage and the boost voltage, and generating an overvoltage detection signal; and a switching element for establishing/blocking electrical conduction between the internal circuit and the end impressed with the boost voltage, in accordance with the overvoltage detection signal.
Abstract: The present invention provides composite materials derived from formaldehyde-free aqueous binder compositions comprising defatted soy flour of no greater than 43 micron mesh particle size, polymer particles of at least one emulsion (co)polymer, and one or more reducing sugar. Also provided are methods of making and using composite materials containing the formaldehyde-free binder compositions.
Abstract: An optical apparatus includes a substrate 1, a wiring pattern 8 formed on the substrate 1, a light-receiving element 3 and a light-emitting element 2 provided on the substrate 1 and spaced apart from each other in a direction x, a light-transmitting resin 4 covering the light-receiving element 3, a light-transmitting resin 5 covering the light-emitting element 2, and a light-shielding resin 6 covering the light-transmitting resin 4 and the light-transmitting resin 5. The wiring pattern 8 includes a first light-blocking portion 83 interposed between the light-shielding resin 6 and the substrate 1 and positioned between the light-receiving element 3 and the light-emitting element 2 as viewed in x-y plane. The first light-blocking portion 83 extends across the light-emitting element 2 as viewed in the direction x.
Abstract: This lighting device comprises a light-emitting unit, a reception unit for receiving information from an adjacent lighting device, and a control unit for letting the light-emitting unit emit light according to the information received by the reception unit.
Abstract: A semiconductor storage device according to the present invention includes: a semiconductor substrate; an embedded insulator embedded in a trench formed in the semiconductor substrate and having an upper portion protruding above a top surface of the semiconductor substrate; a first insulating film formed on the top surface of the semiconductor substrate; a floating gate formed on the first insulating film at a side of the embedded insulator, having a side portion arching out above the embedded insulator, and having a side surface made of a flat surface and a curved surface continuing below the flat surface; a second insulating film contacting an upper surface, the flat surface and the curved surface of the floating gate; and a control gate opposing the upper surface, the flat surface and the curved surface of the floating gate across the second insulating film.
Abstract: Provided is a semiconductor device in which on-resistance is largely reduced. The semiconductor device includes an n type epitaxial layer in which each region between neighboring trenches becomes a channel, and a plurality of embedded electrodes each of which is formed on an inner surface of each trench via a silicon oxide film. The plurality of embedded electrodes include two types of embedded electrodes to which voltages are applied separately. By blocking each region between neighboring trenches with a depletion layer formed around every trench, current flowing through each region between the neighboring trenches is interrupted. By deleting the depletion layer formed around the trench filled with the embedded electrode, current can flow through each region between neighboring trenches.
Abstract: The light emitting device control circuit device 100 in accordance with the disclosure includes a power source V1, a transistor TR1, a light emitting unit EU1, switches S1 to S17, constant current sources CC1 to CC17, and a controller 110. A switching voltage Vs1 is supplied from the controller 110 to turn ON or turn OFF the transistor TR intermittently, a pulse voltage is supplied to a pulse voltage supplying line Y1 connected to a drain terminal D of the transistor TR1. The driving signals SP1 to SP17 are sequentially supplied to the switches S1 to S17 to turn ON or turn OFF them (i.e., time division drive). The light emitting devices A1 to A17 are driven sequentially by a pulse current (i.e., time division drive) when a high voltage is supplied to the pulse voltage supplying line Y1 and when the driving signals SP1 to SP17 are turned ON.
Abstract: An inventive semiconductor device includes a semiconductor chip having a passivation film, and a sealing resin layer provided over the passivation film for sealing a front side of the semiconductor chip. The sealing resin layer extends to a side surface of the passivation film to cover the side surface.
Abstract: This invention provides an aqueous polymeric dispersion, the polymer including, as polymerized units: from 0.1 to 10%, by weight based on the weight of the polymer, monomer selected from the group consisting of strong carboxylic acid monomers, sulfonic acid monomers and phosphorous-containing acid monomers, and from 0.01 to 3%, by weight based on the weight of the polymer, a moiety including the structure, wherein X?CY, N, or P and Y, independently ?H, C, N, O, Cl, Br, F, Si, S, or P. Also, a method for forming the aqueous polymeric dispersion and a method for providing a coating having improved adhesion to a substrate, particularly to a metal substrate, is provided.
Type:
Grant
Filed:
July 13, 2009
Date of Patent:
November 5, 2013
Assignee:
Rohm and Haas Company
Inventors:
James C. Bohling, Andrew Hejl, Alvin M. Maurice
Abstract: UV curable compositions and methods for depositing one or more metal or metal alloy films on substrates are disclosed. The UV curable compositions contain a catalyst, one or more carrier particles, one or more UV curing agents, and one or more water-soluble or water-dispersible organic compounds. Metal or metal alloys may be deposited on the substrates by electroless or electrolytic deposition.
Type:
Grant
Filed:
November 28, 2005
Date of Patent:
November 5, 2013
Assignee:
Rohm and Haas Electronic Materials LLC
Inventors:
Peter R. Levey, Nathaniel E. Brese, Neil D. Brown, Stanley J. Jasne
Abstract: A light source turn-on/off controller includes an input section of a turn-on/off timing signal, a PWM signal generating section for generating a pulse signal responding to a rise or a fall of the timing signal, a duty cycle of the pulse signal changing so as to simulate a rise or a fall of emission in turn-on or turn-off of a filament, an emission control section for controlling an emitting section responding to the pulse signal from the PWM signal generating section, and a storage section for storing a control data table for duty cycle control by the PWM signal generating section. The control data table includes a rise table to be referred to in the rise of emission and a fall table to be referred to in the fall of emission, and each of the rise table and the fall table indicates association between elapsed time from the rise or the fall of the timing signal and the duty cycle of the pulse signal, and a relationship between the tables indicates that they cannot be superposed on each other.
Abstract: A level shift circuit includes an input port to which an input signal is input, a first signal amplifying unit configured to amplify the input signal input to the input port, a node at the first signal amplifying unit to output the amplified signal, a level shift input port to which a level shift voltage for controlling a DC level of the node is input, a first supply voltage configured to drive the first signal amplifying unit, and a level shift voltage generation circuit configured to generate the first supply voltage and the level shift voltage.
Abstract: A semiconductor device (A1) includes a first n-type semiconductor layer (11), a second n-type semiconductor layer (12), a p-type semiconductor layer (13), a trench (3), an insulating layer (5), a gate electrode (41), and an n-type semiconductor region (14). The p-type semiconductor layer (13) includes a channel region that is along the trench (3) and in contact with the second n-type semiconductor layer (12) and the n-type semiconductor region (14). The size of the channel region in the depth direction x is 0.1 to 0.5 ?m. The channel region includes a high-concentration region where the peak impurity concentration is approximately 1×1018 cm?3. The semiconductor device A1 thus configured allows achieving desirable values of on-resistance, dielectric withstand voltage and threshold voltage.
Abstract: This invention relates to the thermal stabilization of halogen-containing polymer compositions, more particularly, this invention relates to a poly(vinyl chloride) (PVC) or a chlorinated polyvinyl chloride (cPVC) composition comprising a methyl tin stabilizer and at least one salt of a polyacid material such as a polycarboxylic acid, a phosphoric acid, or a boric acid.
Type:
Grant
Filed:
March 26, 2010
Date of Patent:
November 5, 2013
Assignee:
Rohm and Haas Company
Inventors:
Bahar Azimipour, Jian-Yang Cho, Eric G. Lundquist, Gene Norris
Abstract: A chemical mechanical polishing composition is provided, comprising, as initial components: water, an abrasive; a diquaternary substance according to formula (I); a derivative of guanidine according to formula (II); and, optionally, a quaternary ammonium salt. Also, provided is a method for chemical mechanical polishing of a substrate, comprising: providing a substrate, wherein the substrate comprises silicon dioxide; providing the chemical mechanical polishing composition of the present invention; providing a chemical mechanical polishing pad; creating dynamic contact at an interface between the chemical mechanical polishing pad and the substrate; and dispensing the chemical mechanical polishing composition onto the chemical mechanical polishing pad at or near the interface between the chemical mechanical polishing pad and the substrate; wherein the chemical mechanical polishing composition has a pH of 2 to 6.
Type:
Grant
Filed:
September 20, 2010
Date of Patent:
October 29, 2013
Assignee:
Rohm and Haas Electronic Materials CMP Holdings, Inc.
Inventors:
Zhendong Liu, Yi Guo, Kancharla-Arun Kumar Reddy, Guangyun Zhang
Abstract: A control IC controls a switching power supply configured to supply a driving voltage Vout to one terminal of an LED string which is driven in an intermittent manner. A sample-and-hold circuit performs sampling of a detection voltage Vs that corresponds to a driving voltage Vout in the on period, and holds the sampled detection voltage Vs in the off period. In the off period, a pulse modulator generates a pulse signal having a duty ratio adjusted such that a hold detection voltage VsH output from the sample-and-hold circuit matches the detection voltage Vs. A driver drives a switching transistor according to the pulse signal.
Abstract: The invention relates to an oral, multiparticulate form of administration, comprising pellets in the size ranging from 50 to 2500 $g(m)m which are substantially constituted of a) an inner matrix layer containing nanoparticles that contain a nucleic acid active ingredient and being embedded in a matrix of a polymer having a mucoadhesive effect, and b) an outer film coating, substantially consisting of an anionic polymer or copolymer that is optionally formulated with pharmaceutically conventional adjuvants, especially emollients.
Type:
Grant
Filed:
November 5, 2005
Date of Patent:
October 29, 2013
Assignee:
Evonik Röhm GmbH
Inventors:
Rosario Lizio, Hans-Ulrich Petereit, Dave Trupti, Michael Gottschalk
Abstract: The present disclosure provides a driving circuit of a light emitting element including a switching power source for supplying a driving voltage to a first terminal of the light emitting element to be driven and a current driver connected to a second terminal of the light emitting element for supplying a driving current to the light emitting element while a burst dimming pulse is being asserted.
Abstract: In a light-emitting element 1, a light-emitting layer 4, a second conductivity type semiconductor layer 5, a transparent electrode layer 6, a reflecting electrode layer 7 and an insulating layer 8 are stacked in this order on a first conductivity type semiconductor layer 3, while a first electrode layer 10 and a second electrode layer 12 are stacked on the insulating layer 8 in an isolated state.
Abstract: The present invention provides a method for reducing fouling of equipment during separation and purification steps of (meth)acrylic acid production by early removal of aldehyde impurities by adding a hydrazide compound well upstream of the separation and purification steps. In particular, carbodhydrazide may be added as an aldehyde scavenging agent to aqueous (meth)acrylic acid prior to dehydration and purification steps.
Type:
Application
Filed:
November 30, 2011
Publication date:
October 24, 2013
Applicant:
ROHM AND HAAS COMPANY
Inventors:
Marc Charendorff, Jamie Jerrick Juliette, Joy Mendoza, Rajesh Shah