Patents Assigned to SEMI
  • Patent number: 10983655
    Abstract: Existing content such as books are reorganized and condensed as electronic books for display on a mobile computing device. The electronic books have a hierarchical structure. A user interacts with the content of the book by way of a touch screen of the mobile computing device. The navigation may be non-linear in nature and the book is reconstructed as a set of primary ideas, supporting ideas, stacks of cards for the supporting ideas, and individual cards comprising elements and commentary from or about the book.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: April 20, 2021
    Assignee: Semi-Linear, Inc.
    Inventor: Linda M. Holliday
  • Patent number: 10985644
    Abstract: An integrated circuit (IC) comprises a regulator circuit, a bootstrap control circuit, and a gate driver that drives a transistor pair in buck or boost mode to switch current through an inductor. The IC has a VIN terminal coupled to receive a voltage generated from an AC power source, a STR terminal coupled to receive a voltage from a stored power source (e.g., a capacitor bank), and a HSB terminal that is capacitively coupled to the inductor. When bucking or boosting, the regulator circuit generates VDD supply voltage from the stored power source, supplies the VDD supply voltage onto the bootstrap control circuit, and the bootstrap control circuit generates a gate driver supply voltage that is supplied to the gate driver circuit. When not bucking or boosting, voltage on the HSB terminal is maintained between a voltage threshold from the AC power source without draining the stored power source.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: April 20, 2021
    Assignee: Active-Semi, Inc.
    Inventors: Thuc Huu Lam, Khanh Quang Dinh, Tung Van Nguyen, Hue Khac Trinh
  • Patent number: 10950727
    Abstract: An SOI wafer contains a compressively stressed buried insulator structure. In one example, the stressed buried insulator (BOX) may be formed on a host wafer by forming silicon oxide, silicon nitride and silicon oxide layers so that the silicon nitride layer is compressively stressed. Wafer bonding provides the surface silicon layer over the stressed insulator layer. Preferred implementations of the invention form MOS transistors by etching isolation trenches into a preferred SOI substrate having a stressed BOX structure to define transistor active areas on the surface of the SOI substrate. Most preferably the trenches are formed deep enough to penetrate through the stressed BOX structure and some distance into the underlying silicon portion of the substrate. The overlying silicon active regions will have tensile stress induced due to elastic edge relaxation.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: March 16, 2021
    Assignee: Acorn Semi, LLC
    Inventors: Paul A. Clifton, R. Stockton Gaines
  • Patent number: 10950707
    Abstract: An electrical device in which an interface layer is disposed in between and in contact with a conductor and a semiconductor.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: March 16, 2021
    Assignee: Acorn Semi, LLC
    Inventors: Daniel E. Grupp, Daniel J. Connelly
  • Patent number: 10937880
    Abstract: An electrical device in which an interface layer is disposed in between and in contact with a conductor and a semiconductor.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: March 2, 2021
    Assignee: Acorn Semi, LLC
    Inventors: Daniel E. Grupp, Daniel J. Connelly
  • Patent number: 10924011
    Abstract: A direct current to direct current (DC-DC) converter can include a chip embedded integrated circuit (IC), one or more switches, and an inductor. The IC can be embedded in a PCB. The IC can include driver, switches, and PWM controller. The IC and/or switches can include eGaN. The inductor can be stacked above the IC and/or switches, reducing an overall footprint. One or more capacitors can also be stacked above the IC and/or switches. Vias can couple the inductor and/or capacitors to the IC (e.g., to the switches). The DC-DC converter can offer better transient performance, have lower ripples, or use fewer capacitors. Parasitic effects that prevent efficient, higher switching speeds are reduced. The inductor size and overall footprint can be reduced. Multiple inductor arrangements can improve performance. Various feedback systems can be used, such as a ripple generator in a constant on or off time modulation circuit.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: February 16, 2021
    Assignee: Faraday Semi, Inc.
    Inventor: Parviz Parto
  • Patent number: 10917015
    Abstract: A multiphase operation control method comprises configuring a plurality of power phases of a power converter to operate in an interleaved manner by passing a token sequentially among the plurality of power phases, turning on a first power phase after the first power phase possesses the token and receives a trigger signal from a control circuit of the first power phase, passing the token to a second power phase after the first power phase finishes, passing the token sequentially until a last power phase of the plurality of power phases possesses the token and forwarding the token to the first power phase after the last power phase finishes.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: February 9, 2021
    Assignee: Active-Semi (BVI) Inc.
    Inventors: Narasimhan Trichy, Masashi Nogawa
  • Publication number: 20210036653
    Abstract: Disclosed are a floating photovoltaic panel installation structure and a buoyancy body for the installation of the floating photovoltaic panel, which may have excellent strength and buoyancy performance even while having light-weight characteristics, and stably support a photovoltaic panel on the water even during the flowing of a water surface due to waves.
    Type: Application
    Filed: October 24, 2019
    Publication date: February 4, 2021
    Applicant: SEMI LED CO., LTD.
    Inventors: Hyo LEE, Young Choul PARK, Noh Joon PARK, Kang Hwa LEE
  • Patent number: 10879366
    Abstract: Techniques for reducing the specific contact resistance of metal—semiconductor (group IV) junctions by interposing a monolayer of group V or group III atoms at the interface between the metal and the semiconductor, or interposing a bi-layer made of one monolayer of each, or interposing multiple such bi-layers. The resulting low specific resistance metal—group IV semiconductor junctions find application as a low resistance electrode in semiconductor devices including electronic devices (e.g., transistors, diodes, etc.) and optoelectronic devices (e.g., lasers, solar cells, photodetectors, etc.) and/or as a metal source and/or drain region (or a portion thereof) in a field effect transistor (FET). The monolayers of group III and group V atoms are predominantly ordered layers of atoms formed on the surface of the group IV semiconductor and chemically bonded to the surface atoms of the group IV semiconductor.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: December 29, 2020
    Assignee: Acorn Semi, LLC
    Inventors: Walter A. Harrison, Paul A. Clifton, Andreas Goebel, R. Stockton Gaines
  • Patent number: 10872964
    Abstract: An electrical contact structure (an MIS contact) includes one or more conductors (M-Layer), a semiconductor (S-Layer), and an interfacial dielectric layer (I-Layer) of less than 4 nm thickness disposed between and in contact with both the M-Layer and the S-Layer. The I-Layer is an oxide of a metal or a semiconductor. The conductor of the M-Layer that is adjacent to and in direct contact with the I-Layer is a metal oxide that is electrically conductive, chemically stable and unreactive at its interface with the I-Layer at temperatures up to 450° C. The electrical contact structure has a specific contact resistivity of less than or equal to approximately 10?5-10?7 ?-cm2 when the doping in the semiconductor adjacent the MIS contact is greater than approximately 2×1019 cm?3 and less than approximately 10?8 ?-cm2 when the doping in the semiconductor adjacent the MIS contact is greater than approximately 1020 cm?3.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: December 22, 2020
    Assignee: Acorn Semi, LLC
    Inventors: Paul A. Clifton, Andreas Goebel
  • Patent number: 10833199
    Abstract: A nanowire transistor includes undoped source and drain regions electrically coupled with a channel region. A source stack that is electrically isolated from a gate conductor includes an interfacial layer and a source conductor, and is coaxially wrapped completely around the source region, extending along at least a portion of the source region. A Schottky barrier between the source conductor and the source region is a negative Schottky barrier and a concentration of free charge carriers is induced in the semiconductor source region.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: November 10, 2020
    Assignee: Acorn Semi, LLC
    Inventors: Paul A. Clifton, Andreas Goebel, Walter A. Harrison
  • Patent number: 10833194
    Abstract: A semiconductor structure includes a layer arrangement consisting of, in sequence, a semiconductor-on-insulator layer (SOI) over a buried oxide (BOX) layer over a buried stressor (BS) layer with a silicon bonding layer (BL) intervening between the BOX and the BS layers. The semiconductor structure may be created by forming the BS layer on a substrate of a first wafer; growing the BL layer at the surface of the BS layer; wafer bonding the first wafer to a second wafer having a silicon oxide layer formed on a silicon substrate such that the silicon oxide layer of the second wafer is bonded to the BL layer of the first wafer, and thereafter removing a portion of the silicon substrate of the second wafer.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: November 10, 2020
    Assignee: ACORN SEMI, LLC
    Inventors: Paul A. Clifton, Andreas Goebel
  • Patent number: 10826480
    Abstract: An integrated circuit includes a gate driver circuit that controls high side and low side transistors to operate in buck or boost mode. In buck operating mode, after switching off the low side transistor, the gate driver circuit controls the high side transistor in a constant current mode. After the low side transistor is disabled and no longer conducts current, then the gate driver circuit controls the high side transistor to operate in full-enhancement mode. In boost operating mode, after switching off the high side transistor, the gate driver circuit controls the low side transistor in a constant current mode. After the high side transistor is disabled, then the gate driver circuit controls the low side switching transistor to operate in full-enhancement mode. In both buck and boost operation, the gate driver circuit operates without dead time in which both the high side and low side transistors are off.
    Type: Grant
    Filed: July 1, 2017
    Date of Patent: November 3, 2020
    Assignee: Active-Semi, Inc.
    Inventors: Thinh Ba Nguyen, Thien Khanh Luong, Thuc Huu Lam, Hue Khac Trinh
  • Patent number: 10790812
    Abstract: An integrated circuit includes a gate driver circuit that controls high side and low side transistors to operate in buck or boost mode. In buck operating mode, after switching off the low side transistor, the gate driver circuit controls the high side transistor in a constant current mode. After the low side transistor is disabled and no longer conducts current, then the gate driver circuit controls the high side transistor to operate in full-enhancement mode. In boost operating mode, after switching off the high side transistor, the gate driver circuit controls the low side transistor in a constant current mode. After the high side transistor is disabled, then the gate driver circuit controls the low side switching transistor to operate in full-enhancement mode. In both buck and boost operation, the gate driver circuit operates without dead time in which both the high side and low side transistors are off.
    Type: Grant
    Filed: July 1, 2017
    Date of Patent: September 29, 2020
    Assignee: Active-Semi, Inc.
    Inventors: Thinh Ba Nguyen, Thien Khanh Luong, Thuc Huu Lam, Hue Khac Trinh
  • Publication number: 20200301532
    Abstract: Existing content such as books are reorganized and condensed as electronic books for display on a mobile computing device. The electronic books have a hierarchical structure. A user interacts with the content of the book by way of a touch screen of the mobile computing device. The navigation may be non-linear in nature and the book is reconstructed as a set of primary ideas, supporting ideas, stacks of cards for the supporting ideas, and individual cards comprising elements and commentary from or about the book.
    Type: Application
    Filed: June 4, 2020
    Publication date: September 24, 2020
    Applicant: Semi-Linear, Inc. d/b/a Citia
    Inventor: Linda M. HOLLIDAY
  • Patent number: 10778079
    Abstract: An integrated circuit (IC) comprises a regulator circuit, a bootstrap control circuit, and a gate driver that drives a transistor pair in buck or boost mode to switch current through an inductor. The IC has a VIN terminal coupled to receive a voltage generated from an AC power source, a STR terminal coupled to receive a voltage from a stored power source (e.g., a capacitor bank), and a HSB terminal that is capacitively coupled to the inductor. When bucking or boosting, the regulator circuit generates VDD supply voltage from the stored power source, supplies the VDD supply voltage onto the bootstrap control circuit, and the bootstrap control circuit generates a gate driver supply voltage that is supplied to the gate driver circuit. When not bucking or boosting, voltage on the HSB terminal is maintained between a voltage threshold from the AC power source without draining the stored power source.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: September 15, 2020
    Assignee: Active-Semi, Inc.
    Inventors: Thuc Huu Lam, Khanh Quang Dinh, Tung Van Nguyen, Hue Khac Trinh
  • Patent number: 10770894
    Abstract: A power loss protection integrated circuit includes a VIN terminal, a VOUT terminal, an STR terminal, a switch circuit (eFuse), a control circuit, and a prebiasing circuit. In a normal mode, current flows from a power source, into VIN, through the eFuse, out of VOUT, and to the output node. A switching converter of which the control circuit is a part is disabled. If a switch over condition then occurs, the eFuse is turned off and the switching converter starts operating. The switching converter receives energy from STR and drives the output node. Switch over is facilitated by prebiasing. Prior to switch over, the prebiasing circuit prebiases a control loop node as a function of eFuse current flow prior to switch over. When the switching converter begins operating, the node is already prebiased for the proper amount of current to be supplied by the switching converter onto the output node.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: September 8, 2020
    Assignee: Active-Semi, Inc.
    Inventors: Thuc Huu Lam, Hue Khac Trinh, Hiroshi Watanabe
  • Patent number: 10768244
    Abstract: A power loss protection integrated circuit includes a storage capacitor terminal (STR), an autonomous capacitor health check circuit, and a capacitor fault terminal (CF). The capacitor health check circuit autonomously performs periodic capacitor check operations. In a check operation, current is sinked from the STR terminal for a predetermined time and in a predetermined way. If during this time the voltage on the STR terminal STR drops below a predetermined voltage, then a digital signal CF is asserted onto the CF terminal. Immediately following each capacitor check, a charging voltage is driven onto the STR terminal to recharge the external capacitors coupled to the STR terminal. In one example, the integrated circuit further includes a current switch circuit (eFuse) and a buck/boost controller. The capacitor health check circuit is only enabled during normal mode operation of the integrated circuit, and the check circuit disables boost operation during capacitor checks.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: September 8, 2020
    Assignee: Active-Semi, Inc.
    Inventors: John H. Carpenter, Jr., Brett E. Smith
  • Patent number: 10749006
    Abstract: A trench power transistor includes a semiconductor body having opposite first and second surfaces, and including at least one active region. Such region includes a trench electrode structure, a well, and a source. The trench electrode structure has an electrode trench recessed from the first surface, and includes first, second, and third insulating layers sequentially disposed over bottom and surrounding walls of the electrode trench, a shield electrode enclosed by the third insulating layer, a fourth insulating layer disposed on the first, second, and third insulating layers, and a gate electrode surrounded by the fourth insulating layer. The second insulating layer made of a nitride material and the fourth insulating layer are different in material. A production method of the transistor is also disclosed.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: August 18, 2020
    Assignee: LEADPOWER-SEMI CO., LTD.
    Inventors: Po-Hsien Li, Jen-Hao Yeh, Hsin-Yen Chiu
  • Patent number: D909321
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: February 2, 2021
    Assignee: Semi LED co., Ltd.
    Inventors: Hyo Lee, Young Choul Park, Noh Joon Park, Kang Hwa Lee