Abstract: There is provided a liquid crystal display device which can easily be made thin and which is capable of high-quality displaying, as well as a mobile electronic device having the same. A liquid crystal display device according to the present invention includes: a first substrate; a second substrate disposed so as to be closer to a viewer than the first substrate is; a liquid crystal layer provided therebetween; and a linear light source provided by a side of the first substrate, the linear light source emitting light toward a side face of the first substrate. The first substrate includes a selective reflection layer for selectively reflecting light of a specific polarization state, and the linear light source includes a point light source and a linear light guiding member for guiding light emitted from the point light source to the side face of the first substrate.
Abstract: A nitride semiconductor light-emitting device wherein a substrate or nitride semiconductor layer has a defect concentration region and a low defect density region other than the defect concentration region. A portion including the defect concentration region of the nitride semiconductor layer or substrate has a trench region deeper than the low defect density region. Thus by digging the trench in the defect concentration region, the growth detection is uniformized, and the surface planarity is improved. The uniformity of the characteristic in the wafer surface leads to improvement of the yield.
Type:
Grant
Filed:
February 19, 2010
Date of Patent:
March 8, 2011
Assignees:
Sharp Kabushiki Kaisha, Sumitomo Electric Industries, Ltd.
Abstract: A toner cartridge is a developer storage container for storing toner (developer) in a hollow cylindrical section that is driven to rotate on its axis so that the stored toner is discharged from an outlet. The cylindrical section has an inner circumferential surface provided with a plurality of liner protruding portions that extend in a direction tilted with respect to a rotation direction of the cylindrical section. Moreover, the toner cartridge includes a stirring member capable of moving in the cylindrical section so as to collide with the protruding portions. This makes it possible to stably supply a developer and to realize an inexpensive developer storage container whose size can be reduced.
Abstract: An object is to prevent fall of a lamp clip due to an external factor such as vibration or impact. It is structured that a reflective member 30 provided inside a backlight device has fitting holes 32 each including an insertion hole 32b and a holding hole 32a, a pair of fitting holes 32 are provided in a direction where the holding holes 32a with respect to the insertion holes 32b are mutually opposed, a pair of locking sections 16 on a substrate 12 of a lamp clip 10 are inserted into the insertion holes 32b in the fitting holes 32, and thereafter, the lamp clip 10 is rotated counter-clockwise or clockwise, so that the locking sections 16 are held in the holding hole 32a.
Abstract: A lens tube has two, first and second lenses (1, 2), a tubular lens frame (3) for holding the two lenses (1, 2), and three spacers (7) in contact with the opposite lens surfaces of the first and second lenses (1, 2). The spacers (7) are arranged so as to be in contact with curved surfaces of the first and second lenses (1, 2) and determine the distance between the first and second lenses (1, 2). The lens frame (3) has the same inner diameter between the first and second lenses (1, 2), and the spacers (7) are in contact with the inner wall of the lens frame (3). Since the lens frame (3) has the same inner diameter between the first and second lenses (1, 2), the first and second lenses (1, 2) are held with their centers perfectly aligned with each other.
Abstract: In an information recording/reproducing device, a resting period (tm) is set to be constant regardless of a mark length of a recording mark and regardless of the number of divided recording pulses. Consequently, it is possible to provide an information recording device, an information recording method, and an information recording medium, each allowing formation of a recording mark with a uniform width by use of a low laser power and allowing reduction of the number of parameters for determining a recording waveform, when forming a long recording mark.
Abstract: The invention relates to a liquid crystal display in which a polymeric component included in a liquid crystal layer is polymerized while adjusting a voltage applied to the liquid crystal layer to regulate the direction of alignment of liquid crystal molecules during polymerization and a method of manufacturing the same. The invention provides a liquid crystal display in which image sticking is mitigated and a method of manufacturing the same. In a method of manufacturing a liquid crystal display in which a liquid crystal composition including a polymeric component that is optically or thermally polymerized is sealed between substrates and in which the polymeric component is polymerized while applying a voltage to the liquid crystal composition to regulate the direction of alignment of liquid crystal molecules during driving, a configuration is employed such that a polymerization initiator in the liquid crystal composition has a concentration x that satisfies 0?x?0.002 (% by weight).
Abstract: The present invention relates to a substrate for a liquid crystal display device and a liquid crystal display device which are used as, for example, a display unit of an electronic apparatus, and an object of the present invention is therefore to provide a substrate for a liquid crystal display device and a liquid crystal display device capable of providing high transmittance, high luminance, and good display characteristics as well as a high production yield.
Abstract: A nitride semiconductor light-emitting device wherein a substrate or nitride semiconductor layer has a defect concentration region and a low defect density region other than the defect concentration region. A portion including the defect concentration region of the nitride semiconductor layer or substrate has a trench region deeper than the low defect density region. Thus by digging the trench in the defect concentration region, the growth detection is uniformized, and the surface planarity is improved. The uniformity of the characteristic in the wafer surface leads to improvement of the yield.
Type:
Grant
Filed:
May 27, 2004
Date of Patent:
March 8, 2011
Assignees:
Sharp Kabushiki Kaisha, Sumitomo Electric Industries, Ltd.
Abstract: The development device of this invention includes a developer bearing member, a magnet, and a developer regulation member. The magnet is fixedly disposed within the interior of the developer bearing member. The developer regulation member includes at least a magnetic member. And the thickness of this magnetic member along the rotational direction of the developer bearing member is between 0.2 mm and 0.4 mm inclusive. Moreover, if the distance over the developer bearing member, from the position thereupon which the center of the magnetic member along the rotational direction opposes, to the position thereupon at which the magnetism of that magnetic pole which is disposed closest to that position is a maximum, is termed L (mm), and the diameter of the developer bearing member is termed D (mm), then the magnetic member is disposed within the range in which the relationship 0?L/D?0.044 holds.
Abstract: A variable resistor is connected to each terminal of (2^n)?1 resistors R connected in series. The variable resistors have resistances RH and RL determined according to a digital signal containing m lower bits LoB<m?1:0>.
Abstract: A system for presenting a summarization of audio and/or visual content having a plurality of segments to a user together with a graphical user interface that preferably indicates to the viewer the relative temporal position of video segments viewed in the summary within the content from which the summary was derived.
Type:
Grant
Filed:
December 13, 2001
Date of Patent:
March 8, 2011
Assignee:
Sharp Laboratories of America, Inc.
Inventors:
James Errico, Petrus J. L. van Beek, Ahmet Mufit Ferman, Baoxin Li, Louis J. Kerofsky
Abstract: Based on each of video data repeatedly supplied to a pixel, a signal processing section generates video data (Dd) for an image display period to be supplied to the pixel and video data (Db) for a blanking period to be supplied to the pixel, and outputs the video data (Dd) and (Db) in a predetermined order. Further, when a gradation transition from a gradation indicated by previous video data (D(i,j,k?2)) supplied to the pixel to a gradation indicated by current video data (D(i,j,k)) supplied to the pixel indicates an increase in luminance, a generating circuit for a blanking period of the signal processing section outputs video data indicative of a gradation which is increased compared with a gradation indicated by gradation data for a blanking period in a steady state, the video data thus outputted being regarded as video data (Db(i,j,k?1)) for a blanking period. This allows for providing a display device capable of displaying moving images with high quality.
Abstract: A display comprises a backlight (30, 45-48) and a spatial light modulator (1) such as a liquid crystal device for modulating light from the backlight (30, 45-48). The backlight has a light-output surface (45) with a first set of regions in the form of parallel evenly spaced strips (48). In a multiple-view mode of the display, these strips (48) emit light whereas the remainder of the output surface (45) is dark. In a single-view mode of operation of the display, the whole of the output surface (45) emits light substantially evenly across the display area of the modulator (1).
Type:
Grant
Filed:
January 14, 2005
Date of Patent:
March 8, 2011
Assignee:
Sharp Kabushiki Kaisha
Inventors:
Adrian M. S. Jacobs, Allan Evans, Grant Bourhill
Abstract: A developing device includes: a first screw provided in a first carrying path, the first screw rotating so as to simultaneously stir the developer and carry the developer in the first carrying path in a predetermined direction; a second screw provided in a second carrying path, the second screw rotating so as to simultaneously stir the developer and carry the developer in the second carrying path in an opposite direction from the predetermined direction; a first communicating path communicating the first carrying path with the second carrying path; a second communicating path communicating the first carrying path with the second carrying path, the second communicating path being formed downstream of the first communicating path in the opposite direction; and a developer bearing member for bearing the developer in the second carrying path so as to supply the toner included in the developer onto a photoreceptor, the toner being supplied through a supply opening to the first carrying path, wherein the developing
Abstract: An active matrix substrate includes: a plurality of pixel electrodes arranged in a matrix pattern and each forming a pixel; a plurality of gate lines each provided between the corresponding pixel electrodes and extending in parallel with each other; a plurality of first source lines each provided between the corresponding pixel electrodes and extending in a direction crossing an extending direction of the gate lines; a plurality of TFTs provided corresponding to the respective pixel electrodes and connected to the respective pixel electrodes, the respective gate lines, and the respective first source lines; a plurality of capacitor lines each provided between the corresponding gate lines and extending in parallel with each other; and a plurality of second source lines each provided between the corresponding pixel electrodes and extending in parallel with the first source lines.
Abstract: An optical element module according to the present invention is provided, in which: a plurality of optical elements are housed within a light shielding holder; a metal light shielding plate is interposed at least between respective planarized surfaces of a spacer section of an upper optical element and a spacer section of a lower optical element; the light shielding plate includes an opening formed at a position corresponding to an optical surface of the optical element; and the light shielding plate includes a cut section, which is formed by cutting a part of a peripheral edge of the light shielding plate.
Abstract: The invention encompasses a method for making nano-sized particles of water-insoluble pharmaceuticals comprising: (1) dissolving the water-insoluble pharmaceutical in a water-miscible solvent, optionally with water and inactive pharmaceutical ingredients, to make a solution; (2) rapidly mixing the solution with an anti-solvent which creates a high level of supersaturation, wherein the anti-solvent is water with optional inactive pharmaceutical ingredients; (3) simultaneously applying energy to the resulting mixture during the mixing of solution and anti-solvent as nano-sized drug particles precipitate out and form a slurry mixture under supersaturation; and (4) optionally isolating the nano-sized particles of water-insoluble pharmaceuticals from the slurry mixture.
Type:
Application
Filed:
April 20, 2009
Publication date:
March 3, 2011
Applicant:
Merck Sharp & Dohme Corp.
Inventors:
Hsien-Hsin Tung, Lei Wang, Santipharp Panmai, Michael Riebe