Abstract: A system and method manages Quality-of-Service (QoS) in a network by allocating resources, such as available network bandwidth. The network devices transmit and receive data traffic streams, each of which includes QoS parameters, including a priority level and bandwidth allocation. The method includes choosing which existing QoS allocations are pre-empted, notifying original requesters of pre-empted allocations, and re-establishing pre-empted allocations with appropriate modifications. If a new QoS request cannot be accommodated due to the previous allocations to lower-priority requesters, the existing lower-priority allocations are released until enough allocations are released to accommodate the new request. Once the new request is allocated, the pre-empted configurations may be reallocated.
Abstract: A wiring structure including a wiring pattern formed in an insulation film on a substrate, a pattern for measurement which is formed in the insulation film on the substrate in a region different from a region where the wiring pattern is formed and is irradiated with measuring light, and a light transmission inhibiting film formed directly below the pattern for measurement, wherein the pattern for measurement is the same pattern as the wiring pattern, and the light transmission inhibiting film is made of a material having light transmissivity that is smaller than light transmissivity of a material of the insulation film forming the pattern for measurement.
Abstract: The liquid crystal display device comprising a pair of substrates with alignment layers formed thereon, and a liquid crystal filled between the substrates. Each pixel has pixel display portions CA, CB and non-display portions DA, EA, DB, EB. The pixel display portions are treated for realizing alignment in a different manner from the non-display portions and the alignment of the pixel display portions is controlled by the alignment of the non-display portions. Moreover, the alignment treatment is executed by the irradiation with ultraviolet rays in an inclined direction.
Abstract: The liquid crystal display device comprising a pair of substrates with alignment layers formed thereon, and a liquid crystal filled between the substrates. Each pixel has pixel display portions CA, CB and non-display portions DA, EA, DB, EB. The pixel display portions are treated for realizing alignment in a different manner from the non-display portions and the alignment of the pixel display portions is controlled by the alignment of the non-display portions. Moreover, the alignment treatment is executed by the irradiation with ultraviolet rays in an inclined direction.
Abstract: A side light type backlight includes a light source including a plurality of LEDs, and a light guide plate. One of the end surfaces of the light guide plate is a light incidence surface at which a plurality of R-LEDs, a plurality of G-LEDs and a plurality of B-LEDs are arranged. LEDs satisfy the relationship of: a distribution range of light emitted from G-LEDs<a distribution range of light emitted from R-LEDs, or a distribution range of light emitted from G-LEDs<a distribution range of light emitted from B-LEDs. Also, LEDs are electrically connected to each other.
Abstract: A method for using a numerical method to design a sequence for code modulating data is described. An input multiple input multiple output signal is determined. A nearest tight frame to one or more given structured vectors is obtained. One or more structured vectors is obtained from the nearest tight frame. The one or more structured vectors is projected onto the space of circulant matrices. One or more classes of matrices that indicates the design of the sequence is outputted. Data is code modulated using the designed sequence.
Abstract: An instrument panel display system of displays vehicle information, amenity information, and safety information as images. In this instrument panel display system, data (image data, image layout data, and image output control data) for displaying the images are generated in a shared manner by a vehicle system processor, an amenity system processor, and a safety system processor. On account of this, the stability of image display on an instrument panel of a vehicle or the like is improved and hence safety of driving is increased.
Abstract: In an active matrix display device having six or more data lines grouped to be connected to one output signal line of a data line drive circuit and including a color filter, the degradation of an image quality due to a parasitic capacitance or the like can be reduced effectively. In an active matrix display device including pixels of three colors having a stripe arrangement or a delta arrangement, n (n denotes a multiple of 3 that is 6 or larger) adjacent data lines DLs form one group and are connected to a source signal output line SO. The ON/OFF of a selection switch ASW provided for each data line DL is controlled so that, among the n data lines forming one group, data lines corresponding to pixels of a color with a contribution to brightness smaller than a contribution of at least another color among the three colors, e.g., blue of RGB, are connected first and last with the source signal output line SO during one horizontal period.
Abstract: An apparatus for transmitting read data comprises a document reader 101, a data compression unit 102, a data transmission means and a CPU 104. The document reader 101 reads in a document having been subjected to predetermined data processing. The data compression unit 102 performs compression of the read data with a designated file format. The CPU 104 checks the limitation on transmission capacity set in advance for each data transmission means. When the volume of data compressed for transmission falls within the limited range of transmission capacity set for the data transmission means, the read data is transmitted to a destination designated by the user via the data transmission means designated by the user.
Abstract: In a display device of the invention, driving of the piezoelectric element is controlled to change the light path of the propagating light inside a light guiding plate. By illuminating a liquid crystal panel in this manner, an illumination time and a no illumination time can be provided for the liquid crystal panel within one frame period. This realizes impulse-type-like display in displaying moving images on the liquid crystal panel, and thereby improves an image quality of moving images. Further, since the light is used only in desired regions, spontaneous luminance can be improved and the light can be used more efficiently.
Abstract: In a submount main body (1) composed of a single crystal silicon, a mounting surface (4) on which a light-emitting device (11) is mounted is composed of a (100)-oriented surface and the inner surface of a through hole (3) which is formed by anisotropic etching is parallel to the (110)-oriented surface. The light-emitting portion of the light-emitting device (11) is arranged to face a device-side opening (31) which opens into the mounting surface (4) of the submount main body (1). Consequently, heat generated in the light-emitting device (11) can be discharged to the outside more efficiently than the case where the light-emitting portion is arranged to face a side opposite to the submount side. Specifically, light from the light-emitting device (11) is reflected by a reflective surface formed on the surface of the through hole (3), and highly efficiently transmitted outside of the submount main body (1).
Abstract: A semiconductor light emitting device in the present invention is formed by laminating an epitaxial layer 30 including an AlGaInP active layer and a second wafer 23 which transmits light derived from the active layer. The crystal axes of the epitaxial layer 30 and the second wafer 23 are generally aligned with each other and are in the range of ?15° to +15° with respect to a lateral face {100} of the second wafer 23. This semiconductor light emitting device, which is a joining type with high external emission efficiency, allows uniform wafer bonding to be achieved over the entire wafer face with ease and with a high yield without causing bonding failure and wafer cracks.
Abstract: An electronic equipment includes a light source, in which light of the light source is guided and emitted from an operation member having translucent properties via an optical waveguide, wherein a phosphor emitting visible light by being excited by the light from the light source is contained in a path through which the light of the light source is guided. A backlight structure in which a light source is provided in a printed substrate that is inside a casing having a waveguide plate, and light of the light source is transmitted through the waveguide plate and emitted, wherein a wavelength-converting phosphor that emits light by being excited by the light of the light source is provided in a waveguide path leading to a point where the light of the light source is transmitted through the waveguide plate and is emitted out, except the light source and the printed substrate.
Abstract: An object of the invention is to provide a boundary scan controller that allows a boundary scan to be executed and also allows a semiconductor apparatus to be manufactured in such a manner that the same type of semiconductor circuit chips are stacked. When identification data stored in memory means (85) is compared with fixed data held in fixed-data holding means (87) by comparison means (88) and the identification data is coincident with the fixed data, a data derivation section (89) outputs the same data as data which is outputted from an output section (86). In a boundary scan test, a data derivation section (89) of a boundary controller (80) provided for each semiconductor circuit chip is connected to the same bus line. When the identification data is not coincident with the fixed data, the data derivation section (89) can be substantially disconnected from the bus line.
Abstract: A movable sheet stacking device including: a sheet receiving section which is provided with respect to a sheet exit section of an image forming apparatus and is for receiving ejected sheets being ejected from the sheet exit section in an ejecting direction and moving the sheets in a direction opposite to the ejecting direction; an end-portion restriction plate which comes into contact with a front end of the sheets moving in the opposite direction to stop the movement of the sheets; and a restriction-plate driving section which sets a position of the end-portion restriction plate according to a sheet type.
Abstract: A plurality of liquid crystal cells are formed by encapsulating pieces of liquid crystal material with in a plurality of first sealing members, respectively, between a pair of flexible substrate base materials. Only respective parts of the pair of substrate base materials are contained inside a vacuum container, and the liquid crystal cells are formed inside the vacuum container reduced in pressure.
Abstract: A high withstand voltage transistor includes: a gate electrode provided in a trench formed on a semiconductor substrate; a source and a drain which are respectively formed on a side of the gate electrode and another side of the gate electrode, and which are a predetermined distance away from the gate electrode; first electric field relaxation layers one of which is formed on a wall of the trench on the side of the source and another one of which is formed on a wall of the trench on the side of the drain; and second electric field relaxation layers one of which is formed between the source and the gate electrode, and another one of which is formed between the drain and the gate electrode.
Abstract: A liquid crystal display device includes liquid crystal elements, each of which is provided on one of a plurality of divisional display areas so as to display the divisional display area; and display driving section for displaying the liquid crystal elements with a weighted mean of luminance ratios of the liquid crystal elements, so as to reduce a display response time of the display area to be shorter than a hypothetical display response time that is obtained when the display area is displayed with a single liquid crystal element. In this way, a liquid crystal display device that improves a response time, and the driving method thereof are provided.
Abstract: The semiconductor device uses an insulating resin that contains at least a resin anti-repellent for adjusting wettability of the insulating resin. The insulating resin is applied on a circuit board, and a semiconductor element is placed thereon and pressed against it. The applied pressure pushes out a portion of the insulating resin under the semiconductor element. This portion of the insulating resin combines with a portion of the insulating resin around the semiconductor element to form a resin fillet on the side surfaces of the semiconductor element.