Patents Assigned to Siemens Healthcare Diagnostics Inc.
  • Publication number: 20200300772
    Abstract: The timing of the reaction of moisture-sensitive reagents for detecting the presence of analytes, e.g. leukocytes in urine samples, is used to detect when the reagents have been compromised by excess humidity. The ratio of light reflectance at wavelengths characteristic of the products of reaction between the reagents and the analyte and an infra-red reference dye is measured at two preset times after a urine sample has been applied to a test strip and used to determine whether the reagents have been compromised by excessive humidity. The presence of unusually dark samples is determined from the reflected light at 470 and 625 nm in order to confirm that the test strips are humidity-compromised.
    Type: Application
    Filed: June 5, 2020
    Publication date: September 24, 2020
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventors: Chris T. Zimmerle, Michael J. Pugia
  • Publication number: 20200286621
    Abstract: A point of care system may comprise a plurality of diagnostic engines and an IDM in electronic communication with each of the plurality of diagnostic engines. Each of the plurality of diagnostic engines may perform testing on a sample inserted into the diagnostic engine. The IDM may be configured to communicate with each of the plurality of diagnostic engines to enable a plurality of tests to be performed on multiple different samples substantially simultaneously by a plurality of users using the plurality of diagnostic engines and to present a single user interface for managing testing by the plurality of diagnostic engines and for receiving the results of tests performed by each of the plurality of diagnostic engines.
    Type: Application
    Filed: November 16, 2018
    Publication date: September 10, 2020
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventors: Karen Lim, Prabhu Ramachandran
  • Publication number: 20200278313
    Abstract: The present disclosure describes a method in which a sample is passed through a fluid flow path of a sensor assembly such that the sample intersects at least one sensor comprising at least three electrodes arranged such that two or more electrodes are opposing and two or more electrodes are beside one another. The sensor is read by a reader monitoring changes to the sensor due to the presence of the sample. The reader measures the presence and/or concentration of one or more analytes within the sample based upon data obtained by the reader.
    Type: Application
    Filed: November 16, 2018
    Publication date: September 3, 2020
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventor: Jennifer Samproni
  • Publication number: 20200276589
    Abstract: Embodiments can provide a test tube vacuum retainer system, comprising an outer body comprising a midline plate; one or more side walls, a bottom wall, and a top plate comprising an access hole; a test tube holder comprising a sealant ring; a base; and a vacuum tube comprising an external outlet; wherein the test tube holder is secured within the outer body to the base, which in turn is secured to the midline plate; wherein the vacuum tube is connected to the test tube holder at a first end, and the external outlet is configured to be connected to a vacuum pump configured to apply a vacuum force to the test tube holder when a test tube is inserted into the access hole and placed onto the test tube holder.
    Type: Application
    Filed: September 10, 2018
    Publication date: September 3, 2020
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventor: George Sorensen
  • Publication number: 20200265263
    Abstract: A neural network-based method for quantifying a volume of a specimen. The method includes providing a specimen, capturing images of the specimen, and directly classifying to one of a plurality of volume classes or volumes using a trained neural network. Quality check modules and specimen testing apparatus adapted to carry out the volume quantification method are described, as are other aspects.
    Type: Application
    Filed: July 25, 2018
    Publication date: August 20, 2020
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventors: Stefan Kluckner, Yao-Jen Chang, Kai Ma, Vivek Singh, Terrence Chen, Benjamin S. Pollack
  • Patent number: 10746665
    Abstract: A model-based method of inspecting a specimen for presence of one or more artifacts (e.g., a clot, bubble, and/or foam). The method includes capturing multiple images of the specimen at multiple different exposures and at multiple spectra having different nominal wavelengths, selection of optimally-exposed pixels from the captured images to generate optimally-exposed image data for each spectra, computing statistics of the optimally-exposed pixels to generate statistical data, identifying a serum or plasma portion of the specimen, and classifying, based on the statistical data, whether an artifact is present or absent within the serum or plasma portion. Testing apparatus and quality check modules adapted to carry out the method are described, as are other aspects.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: August 18, 2020
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Stefan Kluckner, Yao-Jen Chang, Terrence Chen, Benjamin S. Pollack
  • Patent number: 10748069
    Abstract: The inventive concepts herein relate to performing block retrieval on a block to be processed of a urine sediment image. The method comprises: using a plurality of decision trees to perform block retrieval on the block to be processed, wherein each of the plurality of decision trees comprises a judgment node and a leaf node, and the judgment node judges the block to be processed to make it reach the leaf node by using a block retrieval feature in a block retrieval feature set to form a block retrieval result at the leaf node, and at least two decision trees in the plurality of decision trees are different in structures thereof and/or judgments performed by the judgment nodes thereof by using the block retrieval feature; and integrating the block retrieval results of the plurality of decision trees so as to form a final block retrieval result.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: August 18, 2020
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Tian Shen, Juan Xu, XiaoFan Zhang
  • Patent number: 10746753
    Abstract: A model-based method of classifying a specimen in a specimen container. The method includes capturing images of the specimen and container at multiple different exposures times, at multiple different spectra having different nominal wavelengths, and at different viewpoints by using multiple cameras. From the captured images, 2D data sets are generated. The 2D data sets are based upon selection of optimally-exposed pixels from the multiple different exposure images to generate optimally-exposed image data for each spectra. Based upon these 2D data sets, various components are classified using a multi-class classifier, such as serum or plasma portion, settled blood portion, gel separator (if present), tube, air, or label. From the classification data and 2D data sets, a 3D model can be generated. Specimen testing apparatus and quality check modules adapted to carry out the method are described, as are other aspects.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: August 18, 2020
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Stefan Kluckner, Yao-Jen Chang, Terrence Chen, Benjamin S. Pollack
  • Patent number: 10746724
    Abstract: In the various illustrative embodiments herein, test devices are described with opposing sensor arrays and same side contacts.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: August 18, 2020
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Jennifer A. Samproni, Todd Andrade, Marlene Shi
  • Publication number: 20200256885
    Abstract: An optical characterization apparatus for imaging a specimen container containing a specimen. The optical characterization apparatus includes a moveable hood configured to move between an open state and a closed state relative to a specimen container imaging location and having an interior, wherein when the moveable hood is in the closed state, a specimen container positioned at the specimen container imaging location is at least partially located within the interior of the moveable hood. One or more optical devices coupled to or within the interior of the moveable hood are positioned, when the moveable hood is in the closed state, to allow imaging of a specimen container positioned at the specimen container imaging location. Automated specimen testing systems, optical characterization apparatus, and methods of measuring characteristics of specimen containers are provided, as are other aspects.
    Type: Application
    Filed: July 25, 2018
    Publication date: August 13, 2020
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventors: Patrick Wissmann, Benjamin S. Pollack
  • Publication number: 20200256884
    Abstract: A method of imaging a sample container and/or a specimen in a sample container. The method includes enclosing at least a portion of a sample container with a moveable hood, the moveable hood having a wall with one or more openings extending between an interior of the moveable hood and an exterior of the moveable hood. Image data of the sample container is generated using one or more imaging devices positioned exterior to the moveable hood. The one or more imaging devices have a line of sight to the sample container through the one or more openings. Automated specimen testing systems, optical characterization apparatus, and methods of measuring characteristics of sample containers are provided, as are other aspects.
    Type: Application
    Filed: July 25, 2018
    Publication date: August 13, 2020
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventors: Patrick Wissmann, Benjamin S. Pollack
  • Patent number: 10737228
    Abstract: Disclosed are mixing apparatus adapted to provide mixing of components in an automated analyzer. The mixing apparatus includes a reservoir configured to contain a coupling liquid, a transducer configured to be driven at a frequency and communicate with the coupling liquid, and a signal generation unit configured to provide a phase modulatable drive signal to the transducer. In some embodiments, improved patient sample and reagent mixing may be provided. Systems and methods are provided, as are other aspects.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: August 11, 2020
    Assignee: Siemens Healthcare Diagnostics Inc
    Inventors: Stephen Krufka, Antoine Haddad, Jeffrey Taylor
  • Patent number: 10725034
    Abstract: A method of determining a macromolecular analyte in a sample suspected of containing the macromolecular analyte is disclosed. The sample and a conjugate reagent comprising a small molecule and a binding partner for the macromolecular analyte are combined in a medium. The conjugate reagent and a labeled binding partner for the small molecule are combined. The conjugate reagent or the medium is examined for an amount of labeled binding partner for the small molecule that is bound to the small molecule, which is related to the amount of the macromolecular analyte in the sample.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: July 28, 2020
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventor: James E. Duffy
  • Patent number: 10725060
    Abstract: A method of tube slot localization is provided using a tray coordinate system and a camera coordinate system. The method includes receiving, a series of images from at least one camera of a tray comprising tube slots arranged in a matrix of rows and columns. Each tube slot is configured to receive a sample tube. The method also includes automatically detecting fiducial markers disposed on cross sectional areas between the tube slots on the tray and receiving an encoder value indicating when each row of the tray is substantially at the center of the camera's field of view. The method further includes determining calibration information to provide mapping of locations from the tray coordinate system to locations from the camera coordinate system and automatically aligning the tray based on the encoder value and calibration information.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: July 28, 2020
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Yao-Jen Chang, Patrick Wissmann, Wen Wu, Guillaume Dumont, Benjamin Pollack, Terrence Chen
  • Publication number: 20200232908
    Abstract: Embodiments provide a method of using image-based tube top circle detection based on multiple candidate selection to localize the tube top circle region in input images. According to embodiments provided herein, the multi-candidate selection enhances the robustness of tube circle detection by making use of multiple views of the same tube to improve the robustness of tube top circle detection. With multiple candidates extracted from images under different viewpoints of the same tube, the multi-candidate selection algorithm selects an optimal combination among the candidates and provides more precise measurement of tube characteristics. This information is invaluable in an IVD environment in which a sample handler is processing the tubes and moving the tubes to analyzers for testing and analysis.
    Type: Application
    Filed: June 25, 2018
    Publication date: July 23, 2020
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventors: Yao-Jen Chang, Stefan Kluckner, Benjamin S. Pollack, Terrence Chen
  • Publication number: 20200222857
    Abstract: The invention relates to a gas in/outlet-adapter system for a container/rack assembly for a diagnostic robot comprising: —a receptacle (15) comprising a gas-inlet wherein the receptacle (15) is attached to a container (12), —a nozzle (16) comprising a gas-outlet wherein the nozzle (16) is attached to a rack to supply the container (12) via the receptacle (15) with a gas at a defined pressure level, wherein the receptacle (12) —provides one opening (24) —which provides for a fluidic contact to the interior of the container (12) —and a second opening (25) —which provides for a gas leak-proof connection to the nozzle (16) on the rack when the receptacle (15) is placed over the nozzle (16), and wherein the nozzle (16) —provides one opening (26)—which provides for a fluidic contact to a tubing system of the rack—and a second opening (27)—which provides for a fluidic contact to the nozzle (16) when the receptacle (15) is placed to cover the nozzle (15).
    Type: Application
    Filed: February 18, 2017
    Publication date: July 16, 2020
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventor: Claus Tuma
  • Patent number: 10710962
    Abstract: Zwitterion-containing compounds for the modification of hydrophobic molecules to improve their solubility and/or to lower their non-specific binding as provided. The zwitterion-containing compounds may be suitable for modification of detectable labels such as biotin and fluorescein to improve their solubility. The zwitterion-containing compounds may also be useful for the preparation of conjugates of proteins, peptides and other macromolecules or for crosslinking molecules and/or macromolecules.
    Type: Grant
    Filed: May 28, 2016
    Date of Patent: July 14, 2020
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Anand Natrajan, David Sharpe, David Wen, Qingping Jiang
  • Publication number: 20200217839
    Abstract: Methods and reagents are disclosed for minimizing a false result in an assay measurement for determining a concentration of an analyte in a sample suspected of containing the analyte. The method comprises pretreating both an antibody and a sample to be subjected to a non-agglutination immunoassay. In the method the antibody and the sample are combined with a pretreatment agent selected from the group consisting of hydroxyphenyl-substituted C1-C5 carboxylic acids and metallic salts thereof and halogen-substituted C1-C5 carboxylic acids and metallic salts thereof in an amount effective to enhance the accuracy of the non-agglutination immunoassay.
    Type: Application
    Filed: March 19, 2020
    Publication date: July 9, 2020
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventors: Tie Q. Wei, Christy Schaible
  • Patent number: 10705103
    Abstract: Systems and methods for use in an in vitro diagnostics setting may include an automation track, a plurality of carriers configured to carry a plurality of sample vessels along the automation track, and a characterization station including a plurality of optical devices. A processor, in communication with the characterization station, can be configured to analyze images to automatically characterize physical attributes related to each carrier and/or sample vessel. A method may include receiving a plurality of images from a plurality of optical devices of a characterization station, wherein the plurality of images comprise images from a plurality of perspectives of a sample vessel being transported by a carrier, automatically analyzing the plurality of images, using a processor, to determine certain characteristics of the sample vessel, and automatically associating the characteristics of the sample vessel with the carrier in a database.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: July 7, 2020
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Benjamin Pollack, Ryan German
  • Patent number: 10706260
    Abstract: A method for analyzing digital holographic microscopy (DHM) data for hematology applications includes receiving a DHM image acquired using a digital holographic microscopy system and identifying one or more erythrocytes in the DHM image. For each respective erythrocyte included in the one or more erythrocytes, a cell thickness value for the respective erythrocyte using a parametric model is estimated, and a cell volume value is calculated for the respective erythrocyte using the cell thickness value.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: July 7, 2020
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Noha Youssry El-Zehiry, Bogdan Georgescu, Lance Anthony Ladic, Ali Kamen, Shanhui Sun