Patents Assigned to Soitec
  • Publication number: 20130054154
    Abstract: A method and device for evaluating inhomogeneous deformations in a first wafer bonded by molecular adhesion to a second wafer. This evaluation method includes the steps of making at least one reading of a plurality of measurement points, the reading corresponding to a surface profile of the first wafer along a predefined direction and over a predefined length, computing a second derivative from the measurement points of the surface profile and evaluating a level of inhomogeneous deformations in the first wafer according to the second derivative.
    Type: Application
    Filed: January 24, 2011
    Publication date: February 28, 2013
    Applicant: SOITEC
    Inventors: Marcel Broekaart, Arnaud Castex, Laurent Marinier
  • Publication number: 20130047918
    Abstract: Deposition systems include a reaction chamber, a substrate support structure disposed within the chamber for supporting a substrate within the reaction chamber, and a gas input system for injecting one or more precursor gases into the reaction chamber. The gas input system includes at least one precursor gas furnace disposed at least partially within the reaction chamber. Methods of depositing materials include separately flowing a first precursor gas and a second precursor gas into a reaction chamber, flowing the first precursor gas through at least one precursor gas flow path extending through at least one precursor gas furnace disposed within the reaction chamber, and, after heating the first precursor gas within the at least one precursor gas furnace, mixing the first and second precursor gases within the reaction chamber over a substrate.
    Type: Application
    Filed: August 22, 2012
    Publication date: February 28, 2013
    Applicant: SOITEC
    Inventors: Ronald Thomas Bertram, JR., Michael Landis
  • Publication number: 20130049012
    Abstract: Methods of forming ternary III-nitride materials include epitaxially growing ternary III-nitride material on a substrate in a chamber. The epitaxial growth includes providing a precursor gas mixture within the chamber that includes a relatively high ratio of a partial pressure of a nitrogen precursor to a partial pressure of one or more Group III precursors in the chamber. Due at least in part to the relatively high ratio, a layer of ternary III-nitride material may be grown to a high final thickness with small V-pit defects therein. Semiconductor structures including such ternary III-nitride material layers are fabricated using such methods.
    Type: Application
    Filed: October 24, 2012
    Publication date: February 28, 2013
    Applicant: Soitec
    Inventors: Soitec, Christophe Figuet, Pierre Tomasini
  • Publication number: 20130052806
    Abstract: Deposition systems include a reaction chamber, and a substrate support structure disposed at least partially within the reaction chamber. The systems further include at least one gas injection device and at least one vacuum device, which together are used to flow process gases through the reaction chamber. The systems also include at least one access gate through which a workpiece substrate may be loaded into the reaction chamber and unloaded out from the reaction chamber. The at least one access gate is located remote from the gas injection device. Methods of depositing semiconductor material may be performed using such deposition systems. Methods of fabricating such deposition systems may include coupling an access gate to a reaction chamber at a location remote from a gas injection device.
    Type: Application
    Filed: August 22, 2012
    Publication date: February 28, 2013
    Applicant: SOITEC
    Inventors: Ronald Thomas Bertram, JR., Christiaan J. Werkhoven, Chantal Arena, Ed Lindow
  • Patent number: 8384425
    Abstract: This invention provides a semiconductor device structure formed on a conventional semiconductor-on-insulator (SeOI) substrate and including an array of patterns, each pattern being formed by at least one field-effect transistor, each FET transistor having, in the thin film, a source region, a drain region, a channel region, and a front control gate region formed above the channel region. The provided device further includes at least one FET transistor having a pattern including a back control gate region formed in the base substrate beneath the channel region, the back gate region being capable of being biased in order to shift the threshold voltage of the transistor to simulate a modification in the channel width of the transistor or to force the transistor to remain off or on whatever the voltage applied on its front control gate. This invention also provides methods of operating such semiconductor device structures.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: February 26, 2013
    Assignee: Soitec
    Inventors: Carlos Mazure, Richard Ferrant
  • Patent number: 8382898
    Abstract: The present invention is related to the field of semiconductor processing equipment and methods and provides, in particular, methods for the sustained, high-volume production of Group III-V compound semiconductor material suitable for fabrication of optic and electronic components, for use as substrates for epitaxial deposition, for wafers and so forth. In preferred embodiments, these methods are optimized for producing Group III-N (nitrogen) compound semiconductor wafers and specifically for producing GaN wafers. Specifically, the method includes reacting an amount of a gaseous Group III precursor as one reactant with an amount of a gaseous Group V component as another reactant in a reaction chamber under conditions sufficient to provide sustained high volume manufacture of the semiconductor material on one or more substrates, with the gaseous Group III precursor continuously provided at a mass flow of 50 g Group III element/hour for at least 48 hours.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: February 26, 2013
    Assignee: Soitec
    Inventors: Chantal Arena, Christiaan Werkhoven
  • Publication number: 20130045584
    Abstract: The invention relates to a method of eliminating fragments of material present on the exposed surface of a first wafer bonded to a second wafer, the method including a step consisting of placing the first wafer in a liquid solution and propagating ultrasonic waves in the solution. The invention also relates to a process for manufacturing a multilayer structure comprising the following successive steps: bonding of a first wafer to a second wafer so as to form a multilayer structure; annealing of the structure; and thinning of the first wafer, including at least one step of chemically etching the first wafer. The process further includes, after the chemical etching step, the elimination of fragments of material present on the exposed surface of the thinned first wafer.
    Type: Application
    Filed: February 7, 2011
    Publication date: February 21, 2013
    Applicant: SOITEC
    Inventor: Benedicte Osternaud
  • Publication number: 20130043600
    Abstract: Methods of forming semiconductor devices include providing a substrate including a layer of semiconductor material on a layer of electrically insulating material. A first metallization layer is formed over a first side of the layer of semiconductor material. Through wafer interconnects are foamed at least partially through the substrate. A second metallization layer is formed over a second side of the layer of semiconductor material opposite the first side thereof. An electrical pathway is provided that extends through the first metallization layer, the substrate, and the second metallization layer between a first processed semiconductor structure carried by the substrate on the first side of the layer of semiconductor material and a second processed semiconductor structure carried by the substrate on the first side of the layer of semiconductor material. Semiconductor structures are fabricated using such methods.
    Type: Application
    Filed: October 22, 2012
    Publication date: February 21, 2013
    Applicants: SOITEC
    Inventors: Soitec, Mariam Sadaka
  • Publication number: 20130045583
    Abstract: A method for measuring defects in a silicon substrate obtained by silicon ingot pulling, wherein the defects have a size of less than 20 nm. The method includes applying a first defect consolidation heat treatment to the substrate at a temperature of between 750 and 850° C. for a time of between 30 minutes and 1 hour to consolidate the defects; applying a second defect enlargement heat treatment to the substrate at a temperature of between 900 and 1000° C. for a time of between 1 hour and 10 hour to enlarge the defects to a size of greater than or equal to 20 nm, with the enlarged defects containing oxygen precipitates; measuring size and density of the enlarged defects in a surface layer of the substrate; and calculating the initial size of the defects on the basis of the measurements of the enlarged defects.
    Type: Application
    Filed: July 12, 2012
    Publication date: February 21, 2013
    Applicant: SOITEC
    Inventors: Patrick Reynaud, Chirstophe Gourdel
  • Patent number: 8377802
    Abstract: Embodiments of the invention relate to methods of fabricating semiconductor structures, and to semiconductor structures fabricated by such methods. In some embodiments, the methods may be used to fabricate semiconductor structures of III-V materials, such as InGaN. A semiconductor layer is fabricated by growing sublayers using differing sets of growth conditions to improve the homogeneity of the resulting layer, to improve a surface roughness of the resulting layer, and/or to enable the layer to be grown to an increased thickness without the onset of strain relaxation.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: February 19, 2013
    Assignee: Soitec
    Inventors: Ed Lindow, Chantal Arena, Ronald Bertram, Ranjan Datta, Subhash Mahajan
  • Patent number: 8372733
    Abstract: The invention relates to a method for fabricating a locally passivated germanium-on-insulator substrate wherein, in order to achieve good electron mobility, nitridized regions are provided at localised positions. Nitridizing is achieved using a plasma treatment. The resulting substrates also form part of the invention.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: February 12, 2013
    Assignees: Soitec, Commissariat à l'Énergie Atomique
    Inventors: Thomas Signamarcheix, Frederic Allibert, Chrystel Deguet
  • Patent number: 8372728
    Abstract: The invention relates to a process for fabricating a multilayer structure that includes bonding a first wafer onto a second wafer, where the first wafer may have a chamfered edge and the bonding interface has an adhesion energy of less than or equal to 1 J/m2, and thinning the first wafer so as to form a transferred layer, where before thinning the first wafer, a step of trimming the edge of the first wafer is carried out using a grinding wheel having a working surface which comprises grit particles with an average size of greater than or equal to 800 mesh or less than or equal to 18 microns, and wherein the trimming step is carried out by lowering the grinding wheel at a rate of descent of greater than or equal to 5 microns per second, such that the descent of the grinding wheel into the first wafer continues to a distance from the bonding interface that is less than or equal to 30 ?m.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: February 12, 2013
    Assignee: Soitec
    Inventor: Alexandre Vaufredaz
  • Publication number: 20130032272
    Abstract: The present invention relates to an apparatus for the manufacture of semiconductor devices wherein the apparatus includes a bonding module that has a vacuum chamber to provide bonding of wafers under pressure below atmospheric pressure; and a loadlock module connected to the bonding module and configured for wafer transfer to the bonding module. The loadlock module is also connected to a first vacuum pumping device configured to reduce the pressure in the loadlock module to below atmospheric pressure. The bonding and loadlock modules remain at a pressure below atmospheric pressure while the wafer is transferred from the loadlock module into the bonding module.
    Type: Application
    Filed: September 21, 2012
    Publication date: February 7, 2013
    Applicant: SOITEC
    Inventors: Marcel Broekaart, Ionut Radu
  • Patent number: 8367521
    Abstract: The present invention relates to a method of forming a SOI structure having a thin silicon layer by forming a first etch stop layer on a donor substrate, forming a second etch stop layer on the first etch stop layer, wherein the material of the second etch stop layer differs from the material of the first etch stop layer, forming a thin silicon layer on the second etch stop layer, preferably by epitaxy, and bonding the intermediate structure to a target substrate, followed by detaching the donor substrate by splitting initiated in the first etch stop layer at a weakened region and removing the remaining material of the etch stop layers to produce a final ETSOI structure. The invention also relates to the ETSOI structure produces by the described method.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: February 5, 2013
    Assignee: Soitec
    Inventors: Nicolas Daval, Cecile Aulnette
  • Patent number: 8367520
    Abstract: Methods and structures for producing semiconductor materials, substrates and devices with improved characteristics are disclosed. Structures and methods for forming reduced strain structures include forming an interface between a support structure surface and a strained semiconductor layer. The support structure is selectively etched to form a plurality of semiconductor islands with reduced levels of strain.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: February 5, 2013
    Assignee: Soitec
    Inventor: Chantal Arena
  • Publication number: 20130026663
    Abstract: A method for curing defects associated with the implantation of atomic species into a semiconductor layer transferred onto a receiver substrate, wherein the semiconductor layer is thermally insulated from the receiver substrate by a low thermal conductivity layer having thermal conductivity that is lower than that of the transferred semiconductor layer. The method includes applying a selective electromagnetic irradiation to the semiconductor layer to heat that layer to a temperature lower than its temperature of fusion to cure defects without causing an increase in the temperature of the receiver substrate beyond 500° C.
    Type: Application
    Filed: July 27, 2012
    Publication date: January 31, 2013
    Applicant: SOITEC
    Inventors: Ionut Radu, Christophe Gourdel, Christelle Vetizou
  • Publication number: 20130026608
    Abstract: The invention relates to a process for manufacturing a semiconductor structure comprising a functionalized layer on a support substrate, comprising the following steps: (a) implanting ionic species in a source substrate comprising the said functionalized layer and a sacrificial buffer layer located under the functionalized layer relative to the direction of implantation, to a depth delimiting the thickness of an upper part of the source substrate comprising the functionalized layer and at least part of the buffer layer; (b) bonding the source substrate to the support substrate; (c) fracturing the source substrate and transferring the upper part of the source substrate to the support substrate; (d) removing the buffer layer by selective etching with respect to the functionalized layer.
    Type: Application
    Filed: July 25, 2012
    Publication date: January 31, 2013
    Applicant: SOITEC
    Inventor: Ionut Radu
  • Publication number: 20130029474
    Abstract: A method for transferring a monocrystalline semiconductor layer onto a support substrate by implanting species in a donor substrate; bonding the donor substrate to the support substrate; and fracturing the donor substrate to transfer the layer onto the support substrate; wherein a portion of the monocrystalline layer to be transferred is rendered amorphous, without disorganizing the crystal lattice of a second portion of the layer, with the portions being, respectively, a surface portion and a buried portion of the monocrystalline layer; and wherein the amorphous portion is recrystallized at a temperature below 500° C., with the crystal lattice of the second portion serving as a seed for recrystallization.
    Type: Application
    Filed: July 26, 2012
    Publication date: January 31, 2013
    Applicant: SOITEC
    Inventors: Gweltaz Gaudin, Carlos Mazure
  • Patent number: 8357587
    Abstract: The invention relates to a method for routing a chamfered substrate, having applications in the field of electronics, optics, or optoelectronics, which involves depositing a layer of a protective material on a peripheral annular zone of the substrate preferably with the aid of a plasma, partially etching the protective material with the aid of a plasma, so as to preserve a protective ring of the deposited material on the front face of the substrate, this ring located at a distance from the edge of the substrate, so as to delimit an accessible peripheral annular zone, etching a thickness of the material constituting the substrate to be routed, preferably with the aid of a plasma that is level with the accessible peripheral annular zone of the substrate, and removing the ring of protective material preferably with the aid of a plasma.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: January 22, 2013
    Assignee: Soitec
    Inventors: Walter Schwarzenbach, Aziz Alami-Idrissi, Alexandre Chibko, Sébastien Kerdiles
  • Patent number: 8357974
    Abstract: A semiconductor-on-glass substrate having a relatively stiff (e.g. relatively high Young's modulus of 125 or higher) stiffening layer or layers placed between the silicon film and the glass in order to eliminate the canyons and pin holes that otherwise form in the surface of the transferred silicon film during the ion implantation thin film transfer process. The new stiffening layer may be formed of a material, such as silicon nitride, that also serves as an efficient barrier against penetration of sodium and other harmful impurities from the glass substrate into the silicon film.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: January 22, 2013
    Assignees: Corning Incorporated, SOITEC
    Inventors: Nadia Ben Mohamed, Ta Ko Chuang, Jeffrey Scott Cites, Daniel Delprat, Alex Usenko