Patents Assigned to Soitec
  • Publication number: 20130294038
    Abstract: The invention relates to an electronic device for radio frequency or power applications, comprising a semiconductor layer supporting electronic components on a support substrate, wherein the support substrate comprises a base layer having a thermal conductivity of at least 30 W/m K and a superficial layer having a thickness of at least 5 ?m, the superficial layer having an electrical resistivity of at least 3000 Ohm·cm and a thermal conductivity of at least 30 W/m K. The invention also relates to two processes for manufacturing such a device.
    Type: Application
    Filed: November 16, 2011
    Publication date: November 7, 2013
    Applicant: SOITEC
    Inventors: Didier Landru, Luciana Capello, Eric Desbonnet, Christophe Figuet, Oleg Kononchuk
  • Patent number: 8575697
    Abstract: An SRAM-type memory cell that includes a semiconductor on insulator substrate having a thin film of semiconductor material separated from a base substrate by an insulating layer; and six transistors such as two access transistors, two conduction transistors and two charge transistors arranged so as to form with the conduction transistors two back-coupled inverters. Each of the transistors has a back control gate formed in the base substrate below the channel and able to be biased in order to modulate the threshold voltage of the transistor, with a first back gate line connecting the back control gates of the access transistors to a first potential and a second back gate line connecting the back control gates of the conduction transistors and charge transistors to a second potential. The first and second potentials can be modulated according to the type of cell control operation.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: November 5, 2013
    Assignee: Soitec
    Inventors: Carlos Mazure, Richard Ferrant, Bich-Yen Nguyen
  • Patent number: 8575002
    Abstract: A method for the direct bonding of a first wafer having an intrinsic curvature before bonding to a second wafer having an intrinsic curvature before bonding, at least one of the two wafers including at least one series of microcomponents. The method includes bringing the two wafers into contact with each other so as to initiate the propagation of a bonding wave therebetween while imposing a predefined bonding curvature in the form of a paraboloid of revolution on one of the two wafers depending at least upon the intrinsic curvature before bonding of the wafer that includes the microcomponents, with the other wafer being free to conform to the predefined bonding curvature.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: November 5, 2013
    Assignee: Soitec
    Inventors: Marcel Broekaart, Gweltaz Gaudin, Arnaud Castex
  • Patent number: 8574968
    Abstract: This invention provides methods for fabricating substantially continuous layers of a group III nitride semiconductor material having low defect densities and optionally having a selected crystal polarity. The methods include epitaxial growth nucleating and/or seeding on the upper portions of a plurality of pillars/islands of a group III nitride material that are irregularly arranged on a template structure. The upper portions of the islands have low defect densities and optionally have a selected crystal polarity. The invention also includes template structures having a substantially continuous layer of a masking material through which emerge upper portions of the pillars/islands. The invention also includes such template structures. The invention can be applied to a wide range of semiconductor materials, both elemental semiconductors, e.g., combinations of Si (silicon) with strained Si (sSi) and/or Ge (germanium), and compound semiconductors, e.g.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: November 5, 2013
    Assignees: Soitec, Arizona Board of Regents for and on Behalf of Arizona State University
    Inventors: Chantal Arena, Christiaan J. Werkhoven, Ronald Thomas Bertram, Jr., Ed Lindow, Subhash Mahajan, Ranjan Datta, Rahul Ajay Trivedi, Ilsu Han
  • Patent number: 8575001
    Abstract: Embodiments of the present invention include methods of directly bonding together semiconductor structures. In some embodiments, a cap layer may be provided at an interface between directly bonded metal features of the semiconductor structures. In some embodiments, impurities are provided within the directly bonded metal features of the semiconductor structures. Bonded semiconductor structures are formed using such methods.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: November 5, 2013
    Assignee: SOITEC
    Inventor: Mariam Sadaka
  • Patent number: 8575010
    Abstract: The invention relates to a method for fabricating a semiconductor substrate by providing a silicon on insulator type substrate that includes a base, an insulating layer and a first semiconductor layer, doping the first semiconductor layer to thereby obtain a modified first semiconductor layer, and providing a second semiconductor layer with a different dopant concentration than the modified first semiconductor layer over or on the modified first semiconductor layer. With this method, an improved dopant concentration profile can be achieved through the various layers which makes the substrates in particular more suitable for various optoelectronic applications.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: November 5, 2013
    Assignee: Soitec
    Inventors: Alexis Drouin, Bernard Aspar, Christophe Desrumaux, Olivier Ledoux, Christophe Figuet
  • Patent number: 8564019
    Abstract: The invention relates to a process for fabricating a heterostructure. This process is noteworthy in that it comprises the following steps: a) a strained crystalline thin film is deposited on, or transferred onto, an intermediate substrate; b) a strain relaxation layer, made of crystalline material capable of being plastically deformed by a heat treatment at a relaxation temperature at which the material constituting the thin film deforms by elastic deformation is deposited on the thin film; c) the thin film and the relaxation layer are transferred onto a substrate; and d) a thermal budget is applied at at least the relaxation temperature, so as to cause the plastic deformation of the relaxation layer and the at least partial relaxation of the thin film by elastic deformation, and thus to obtain the final heterostructure.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: October 22, 2013
    Assignee: Soitec
    Inventor: Bruce Faure
  • Patent number: 8563399
    Abstract: The invention relates to a detachable substrate for the electronics, optics or optoelectronics industry, that includes a detachable layer resting on a buried weakened region. This substrate is remarkable in that this buried weakened region consists of a semiconductor material that is denser in the liquid state than in the solid state and that contains in places precipitates of naturally volatile impurities. The invention also relates to a process for fabricating and detaching a detachable substrate.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: October 22, 2013
    Assignee: Soitec
    Inventor: Michel Bruel
  • Patent number: 8545628
    Abstract: The present invention relates to methods and apparatus that are optimized for producing Group III-N (nitrogen) compound semiconductor wafers and specifically for producing GaN wafers. Specifically, the methods relate to substantially preventing the formation of unwanted materials on an isolation valve fixture within a chemical vapor deposition (CVD) reactor. In particular, the invention provides apparatus and methods for limiting deposition/condensation of GaCl3 and reaction by-products on an isolation valve that is used in the system and method for forming a monocrystalline Group III-V semiconductor material by reacting an amount of a gaseous Group III precursor as one reactant with an amount of a gaseous Group V component as another reactant in a reaction chamber.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: October 1, 2013
    Assignee: Soitec
    Inventors: Chantal Arena, Christiaan Werkhoven
  • Patent number: 8541290
    Abstract: A method of fabricating a device by providing an auxiliary substrate having a metal nitride layer disposed thereon where the nitride layer has a nitrogen face and an opposite face and a dislocation density that is less than about 106, with the nitrogen face of the nitride layer facing the auxiliary substrate; depositing at least one epitaxial nitride layer on the exposed opposite face of the nitride layer of the structure; depositing a further metal layer over at least a portion of the epitaxial nitride layer(s); bonding a final substrate on the deposited metal layer; and removing the auxiliary substrate to form the device from the final substrate and deposited layers. Preferably, the device that is formed includes a LED or laser.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: September 24, 2013
    Assignee: Soitec
    Inventors: Fabrice Letertre, Bruce Faure
  • Publication number: 20130244410
    Abstract: Bulk III-nitride semiconductor materials are deposited in an HPVE process using a metal trichloride precursor on a metal nitride template layer of a growth substrate. Deposition of the bulk III-nitride semiconductor material may be performed without ex situ formation of the template layer using a MOCVD process. In some embodiments, a nucleation template layer is formed ex situ using a non-MOCVD process prior to depositing bulk III-nitride semiconductor material on the template layer using an HVPE process. In additional embodiments, a nucleation template layer is formed in situ using an MOCVD process prior to depositing bulk III-nitride semiconductor material on the template layer using an HVPE process. In further embodiments, a nucleation template layer is formed in situ using an HVPE process prior to depositing bulk III-nitride semiconductor material on the template layer using an HVPE process.
    Type: Application
    Filed: November 23, 2011
    Publication date: September 19, 2013
    Applicant: Soitec
    Inventors: Chantal Arena, Ronald Thomas Bertram, Ed Lindow
  • Patent number: 8535996
    Abstract: Embodiments of the invention relate to substrates comprising a base wafer, an insulating layer and a top semiconductor layer, wherein the insulating layer comprises at least a zone wherein a density of charges is in absolute value higher than 1010 charges/cm2. The invention also relates to processes for making such substrates.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: September 17, 2013
    Assignee: SOITEC
    Inventors: Mohamad Shaheen, Frederic Allibert, Gweltaz Gaudin, Fabrice Lallement, Didier Landru, Karin Landry, Carlos Mazure
  • Publication number: 20130234157
    Abstract: Embodiments of the invention include methods for forming Group III-nitride semiconductor structure using a halide vapor phase epitaxy (HVPE) process. The methods include forming a continuous Group III-nitride nucleation layer on a surface of a non-native growth substrate, the continuous Group III-nitride nucleation layer concealing the upper surface of the non-native growth substrate. Forming the continuous Group III-nitride nucleation layer may include forming a Group III-nitride layer and thermally treating said Group III-nitride layer. Methods may further include forming a further Group III-nitride layer upon the continuous Group III-nitride nucleation layer.
    Type: Application
    Filed: November 23, 2011
    Publication date: September 12, 2013
    Applicant: Soitec
    Inventors: Chantal Arena, Ronald Thomas Bertram, JR., Ed Lindow, Subhash Mahajan, Fanyu Meng
  • Publication number: 20130234148
    Abstract: Methods of fabricating semiconductor structures include the formation of molybdenum nitride at one or more surfaces of a substrate comprising molybdenum, and providing a layer of III-V semiconductor material such as GaN over the substrate. Semiconductor structures formed by methods described herein may include a substrate comprising molybdenum, molybdenum nitride at one or more surfaces of the substrate, and a layer of GaN bonded to the molybdenum nitride.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: SOITEC
    Inventor: Christiaan J. Werkhoven
  • Patent number: 8530334
    Abstract: The invention concerns a process of preparing a thin layer to be transferred onto a substrate having a surface topology and, therefore, variations in altitude or level, in a direction perpendicular to a plane defined by the thin layer, this process comprising the formation on the thin layer of a layer of adhesive material, the thickness of which enables carrying out a plurality of polishing steps of its surface in order to eliminate any defect or void or almost any defect or void, in preparation for an assembly via a molecular kind of bonding with the substrate.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: September 10, 2013
    Assignee: Soitec
    Inventors: Chrystelle Lagahe, Bernard Aspar
  • Publication number: 20130221496
    Abstract: Embodiments relate to semiconductor structures and methods of forming them. In some embodiments, the methods may be used to fabricate a semiconductor substrate by forming a weakened zone in a donor structure at a predetermined depth to define a transfer layer between an attachment surface and the weakened zone and a residual donor structure between the weakened zone and a surface opposite the attachment surface. A metallic layer is formed on the attachment surface and provides an ohmic contact between the metallic layer and the transfer layer, a matched Coefficient of Thermal Expansion (CTE) for the metallic layer that closely matches a CTE of the transfer layer, and sufficient stiffness to provide structural support to the transfer layer. The transfer layer is separated from the donor structure at the weakened zone to form a composite substrate comprising the transfer layer the metallic layer.
    Type: Application
    Filed: March 21, 2013
    Publication date: August 29, 2013
    Applicant: Soitec
    Inventor: Soitec
  • Publication number: 20130214423
    Abstract: Methods of fabricating semiconductor devices that include interposers include the formation of conductive vias through a material layer on a recoverable substrate. A carrier substrate is bonded over the material layer, and the recoverable substrate is then separated from the material layer to recover the recoverable substrate. A detachable interface may be provided between the material layer and the recoverable substrate to facilitate the separation. Electrical contacts that communicate electrically with the conductive vias may be formed over the material layer on a side thereof opposite the carrier substrate. Semiconductor structures and devices are formed using such methods.
    Type: Application
    Filed: February 16, 2012
    Publication date: August 22, 2013
    Applicant: SOITEC
    Inventor: Mariam Sadaka
  • Publication number: 20130217206
    Abstract: Methods of fabricating semiconductor devices include forming a metal silicide in a portion of a crystalline silicon layer, and etching the metal silicide using an etchant selective to the metal silicide relative to the crystalline silicon to provide a thin crystalline silicon layer. Silicon-on-insulator (SOI) substrates may be formed by providing a layer of crystalline silicon over a base substrate with a dielectric material between the layer of crystalline silicone and the base substrate, and thinning the layer of crystalline silicon by forming a metal silicide layer in a portion of the crystalline silicon, and then etching the metal silicide layer using an etchant selective to the metal silicide layer relative to the crystalline silicon.
    Type: Application
    Filed: February 22, 2012
    Publication date: August 22, 2013
    Applicant: SOITEC
    Inventors: Mariam Sadaka, Ionut Radu
  • Patent number: 8513092
    Abstract: A method for producing a stacked structure having an ultra thin buried oxide (UTBOX) layer therein by forming an electrical insulator layer on a donor substrate, introducing elements into the donor substrate through the insulator layer, forming an electrical insulator layer, on a second substrate, and bonding the two substrates together to form the stack, with the two insulator layers limiting the diffusion of water and forming the UTBOX layer between the two substrates at a thickness of less than 50 nm, wherein the donor oxide layer has, during bonding, a thickness at least equal to that of the bonding oxide layer.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: August 20, 2013
    Assignee: Soitec
    Inventor: Didier Landru
  • Publication number: 20130207244
    Abstract: Embodiments of to invention relate to a process for fabricating a silicon-on-insulator structure comprising the following steps: providing a donor substrate and a support substrate, only one of the substrates being covered with an oxide layer; forming, in the donor substrate, a weak zone; plasma activating the oxide layer; bonding the donor substrate to the support substrate in a partial vacuum; implementing a bond-strengthening anneal at a temperature of 350° C. or less causing the donor substrate to cleave along the weak zone; and carrying out a heat treatment at a temperature above 900° C. A transition from the temperature of the bond-strengthening anneal to the temperature of the heat treatment may be achieved at a ramp rate above 10° C./s.
    Type: Application
    Filed: September 27, 2012
    Publication date: August 15, 2013
    Applicant: SOITEC
    Inventor: SOITEC