Patents Assigned to Solexel, Inc.
  • Patent number: 8946547
    Abstract: Fabrication methods and structures relating to backplanes for back contact solar cells that provide for solar cell substrate reinforcement and electrical interconnects are described. The method comprises depositing an interdigitated pattern of base electrodes and emitter electrodes on a backside surface of a semiconductor substrate, forming electrically conductive emitter plugs and base plugs on the interdigitated pattern, and attaching a backplane having a second interdigitated pattern of base electrodes and emitter electrodes at the conductive emitter and base plugs to form electrical interconnects.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: February 3, 2015
    Assignee: Solexel, Inc.
    Inventors: Mehrdad M. Moslehi, David Xuan-Qi Wang, Karl-Josef Kramer, Sean M. Seutter, Sam Tone Tor, Anthony Calcaterra
  • Publication number: 20150020877
    Abstract: Fabrication methods and structures relating to backplanes for back contact solar cells that provide for solar cell substrate reinforcement and electrical interconnects as well as Fabrication methods and structures for forming thin film back contact solar cells are described.
    Type: Application
    Filed: August 9, 2012
    Publication date: January 22, 2015
    Applicant: SOLEXEL, INC.
    Inventors: Mehrdad M. Moslehi, Pawan Kapur, Karl-Josef Kramer, Virendra V. Rana, Sean Seutter, Anand Deshpande, Anthony Calcaterra, Gerry Olsen, Kamran Manteghi, Thom Stalcup, George D. Kamian, David Xuan-Qi Wang, Yen-Sheng Su, Michael Wingert
  • Patent number: 8937243
    Abstract: The present disclosure enables high-volume cost effective production of three-dimensional thin film solar cell (3-D TFSC) substrates. First, the present disclosure discloses pyramid-like unit cell structure 16 and 50 which enable epitaxial growth through their open pyramidal structure. The present disclosure than gives four 3-D TFSC embodiments 70, 82, 100, and 110 which may combined as necessary. A basic 3-D TFSC having a substrate, emitter, oxidation on the emitter, front and back metal contacts allows simple processing. Other embodiments disclose a selective emitter, selective backside metal contact, and front-side SiN ARC layers. Several processing methods including process flows 150, 200, 250, 300, and 350 enable production of these 3-D TFSC. Further, the present disclosure enables higher throughput through the use of dual sided template 400. By processing the substrate in the template, the present disclosure increases yield and reduces processing steps.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: January 20, 2015
    Assignee: Solexel, Inc.
    Inventors: Pawan Kapur, Mehrdad M. Moslehi
  • Patent number: 8926803
    Abstract: It is an object of this disclosure to provide high productivity, low cost-of-ownership manufacturing equipment for the high volume production of photovoltaic (PV) solar cell device architecture. It is a further object of this disclosure to reduce material processing steps and material cost compared to existing technologies by using gas-phase source silicon. The present disclosure teaches the fabrication of a sacrificial substrate base layer that is compatible with a gas-phase substrate growth process. Porous silicon is used as the sacrificial layer in the present disclosure. Further, the present disclosure provides equipment to produce a sacrificial porous silicon PV cell-substrate base layer.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: January 6, 2015
    Assignee: Solexel, Inc.
    Inventors: Doug Crafts, Mehrdad Moslehi, Subramanian Tamilmani, Joe Kramer, George D. Kamian, Somnath Nag
  • Patent number: 8916772
    Abstract: A three-dimensional thin-film semiconductor substrate with selective through-holes is provided. The substrate having an inverted pyramidal structure comprising selectively formed through-holes positioned between the front and back lateral surface planes of the semiconductor substrate to form a partially transparent three-dimensional thin-film semiconductor substrate.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: December 23, 2014
    Assignee: Solexel, Inc.
    Inventors: Mehrdad M. Moslehi, David Xuan-Qi Wang
  • Publication number: 20140370650
    Abstract: According to one aspect of the disclosed subject matter, a method for forming a monolithically isled back contact back junction solar cell using bulk wafers is provided. Emitter and base contact regions are formed on a backside of a semiconductor wafer having a light receiving frontside and a backside opposite said frontside. A first level contact metallization is formed on the wafer backside and an electrically insulating backplane is attached to the semiconductor wafer backside. Isolation trenches are formed in the semiconductor wafer patterning the semiconductor wafer into a plurality of electrically isolated isles and the semiconductor wafer is thinned. A metallization structure is formed on the electrically insulating backplane electrically connecting the plurality of isles.
    Type: Application
    Filed: February 12, 2014
    Publication date: December 18, 2014
    Applicant: Solexel, Inc.
    Inventors: Mehrdad M. Moslehi, Pawan Kapur, Karl-Josef Kramer, Michael Wingert
  • Publication number: 20140360567
    Abstract: Methods and structures for photovoltaic back contact solar cells having multi-level metallization with at least one aluminum-silicon alloy metallization layer are provided.
    Type: Application
    Filed: March 28, 2013
    Publication date: December 11, 2014
    Applicant: Solexel, Inc.
    Inventor: Solexel, Inc.
  • Patent number: 8906218
    Abstract: This disclosure enables high-productivity controlled fabrication of uniform porous semiconductor layers (made of single layer or multi-layer porous semiconductors such as porous silicon, comprising single porosity or multi-porosity layers). Some applications include fabrication of MEMS separation and sacrificial layers for die detachment and MEMS device fabrication, membrane formation and shallow trench isolation (STI) porous silicon (using porous silicon formation with an optimal porosity and its subsequent oxidation). Further, this disclosure is applicable to the general fields of photovoltaics, MEMS, including sensors and actuators, stand-alone, or integrated with integrated semiconductor microelectronics, semiconductor microelectronics chips and optoelectronics.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: December 9, 2014
    Assignee: Solexel, Inc.
    Inventors: Karl-Josef Kramer, Mehrdad M. Moslehi, Subramanian Tamilmani, George Kamian, Jay Ashjaee, Takao Yonehara
  • Publication number: 20140326295
    Abstract: According to one aspect of the disclosed subject matter, a monolithically isled solar cell is provided. The solar cell comprises a semiconductor layer having a light receiving frontside and a backside opposite the frontside and attached to an electrically insulating backplane. A trench isolation pattern partitions the semiconductor layer into electrically isolated isles on the electrically insulating backplane. A first metal layer having base and emitter electrodes is positioned on the semiconductor layer backside. A patterned second metal layer providing cell interconnection and connected to the first metal layer by via plugs is positioned on the backplane.
    Type: Application
    Filed: November 5, 2013
    Publication date: November 6, 2014
    Applicant: Solexel, Inc.
    Inventor: Mehrdad M. Moslehi
  • Publication number: 20140318611
    Abstract: Fabrication methods and structures relating to multi-level metallization for solar cells as well as fabrication methods and structures for forming thin film back contact solar cells are provided.
    Type: Application
    Filed: December 31, 2012
    Publication date: October 30, 2014
    Applicant: SOLEXEL, INC.
    Inventor: Solexel, Inc.
  • Patent number: 8853521
    Abstract: The present disclosure presents a partially-transparent (see-through) three-dimensional thin film solar cell (3-D TFSC) substrate. The substrate includes a plurality of unit cells. Each unit cell structure has the shape of a truncated pyramid, and its parameters may be varied to allow a desired portion of sunlight to pass through.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: October 7, 2014
    Assignee: Solexel, Inc.
    Inventors: Mehrdad Moslehi, David Xuan-Qi Wang
  • Patent number: 8847060
    Abstract: Solar module structures and methods for assembling solar module structures. The solar module structures comprise pyramidal three-dimensional thin-film solar cells arranged in solar module structures. The pyramidal three-dimensional thin-film solar cell comprises a pyramidal three-dimensional thin-film solar cell substrate with emitter junction regions and doped base regions. The three-dimensional thin-film solar cell further includes emitter metallization regions and base metallization regions. The three-dimensional thin-film solar cell substrate comprises a plurality of pyramid-shaped unit cells. The solar module structures may be used in solar glass applications, building façade applications, rooftop installation applications as well as for centralized solar electricity generation.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: September 30, 2014
    Assignee: Solexel, Inc.
    Inventor: Mehrdad M. Moslehi
  • Patent number: 8828517
    Abstract: A three-dimensional thin film solar cell (3-D TFSC) substrate having enhanced mechanical strength, light trapping, and metal modulation coverage properties. The substrate includes a plurality of unit cells, which may or may not be different. Unit cells are defined as a small self-contained geometrical pattern which may be repeated. Each unit cell structure includes a wall enclosing a trench. Further, the unit cell includes an aperture having an aperture diameter. A pre-determined variation in wall thickness, wall height, and aperture diameter among unit cells across the substrate produces specific advantages.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: September 9, 2014
    Assignee: Solexel, Inc.
    Inventors: David Xuan-Qi Wang, Mehrdad M. Moslehi, Pawan Kapur, Suketu Parikh
  • Patent number: 8828784
    Abstract: Methods and structures for extracting at least one electric parametric value from a back contact solar cell having dual level metallization are provided.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: September 9, 2014
    Assignee: Solexel, Inc.
    Inventors: Swaroop Kommera, Pawan Kapur, Mehrdad M. Moslehi
  • Patent number: 8742249
    Abstract: Solar module structures 210 and 270 and methods for assembling solar module structures. The solar module structures 210 and 270 comprise three-dimensional thin-film solar cells 110 arranged in solar module structures 210 and 270. The three-dimensional thin-film solar cell comprises a three-dimensional thin-film solar cell substrate (124 and 122, respectively) with emitter junction regions 1352 and doped base regions 1360. The three-dimensional thin-film solar cell further includes emitter metallization regions and base metallization regions. The 3-D TFSC substrate comprises a plurality of single-aperture or dual-aperture unit cells. The solar module structures 270 using three-dimensional thin-film solar cells comprising three-dimensional thin-film solar cell substrates with a plurality of dual-aperture unit cells may be used in solar glass applications.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: June 3, 2014
    Assignee: Solexel, Inc.
    Inventor: Mehrdad M. Moslehi
  • Publication number: 20140146854
    Abstract: Non-contact and non-invasive temperature measurement structures and methods for thermal processing systems which neither damage nor contaminate the thermal processing environment are provided.
    Type: Application
    Filed: April 19, 2013
    Publication date: May 29, 2014
    Applicant: Solexel, Inc.
    Inventor: Solexel, Inc.
  • Publication number: 20140147944
    Abstract: Methods and structures for extracting at least one electric parametric value from a back contact solar cell having dual level metallization are provided.
    Type: Application
    Filed: April 23, 2013
    Publication date: May 29, 2014
    Applicant: Solexel, Inc.
    Inventors: Swaroop Kommera, Pawan Kapur, Mehrdad M. Moslehi
  • Publication number: 20140127834
    Abstract: Methods here disclosed provide for selectively coating the top surfaces or ridges of a 3-D substrate while avoiding liquid coating material wicking into micro cavities on 3-D substrates. The substrate includes holes formed in a three-dimensional substrate by forming a sacrificial layer on a template. The template includes a template substrate with posts and trenches between the posts. The steps include subsequently depositing a semiconductor layer and selectively etching the sacrificial layer. Then, the steps include releasing the semiconductor layer from the template and coating the 3-D substrate using a liquid transfer coating step for applying a liquid coating material to a surface of the 3-D substrate. The method may further include coating the 3-D substrate by selectively coating the top ridges or surfaces of the substrate.
    Type: Application
    Filed: July 15, 2013
    Publication date: May 8, 2014
    Applicant: Solexel, Inc.
    Inventors: David Xuan-Qi Wang, Mehrdad M. Moslehi, Somnath Nag
  • Publication number: 20140102531
    Abstract: Structures and methods for a solar cell having an integrated bypass switch are provided. According to one embodiment, an integrated solar cell and bypass switch comprising a semiconductor layer having background doping, a frontside, and a backside is provided. A patterned first level metal is positioned on the layer backside and an electrically insulating backplane is positioned on the first level metal. A trench isolation pattern partitions the semiconductor layer into a solar cell region and at least one monolithically integrated bypass switch region. A patterned second level metal is positioned on the electrically insulating backplane and which connects to the first level metal through the backplane to complete the electrical metallization of the monolithically integrated solar cell and bypass switch structure.
    Type: Application
    Filed: October 16, 2013
    Publication date: April 17, 2014
    Applicant: Solexel, Inc.
    Inventor: Mehrdad M. Moslehi
  • Patent number: 8656860
    Abstract: The present disclosure presents a chemical vapor deposition reactor having improved chemical utilization and cost efficiency. The wafer susceptors of the present disclosure may be used in a stackable configuration for processing many wafers simultaneously. The reactors of the present disclosure may be reverse-flow depletion mode reactors, which tends to provide uniform film thickness and a high degree of chemical utilization.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: February 25, 2014
    Assignee: Solexel, Inc.
    Inventors: George Kamian, Mehrdad M. Moslehi