Patents Assigned to STMicroelectronics, Inc.
  • Patent number: 10043805
    Abstract: Methods and structures for forming strained-channel finFETs are described. Fin structures for finFETs may be formed using two epitaxial layers of different lattice constants that are grown over a bulk substrate. A first thin, strained, epitaxial layer may be cut to form strain-relieved base structures for fins. The base structures may be constrained in a strained-relieved state. Fin structures may be epitaxially grown in a second layer over the base structures. The constrained base structures can cause higher amounts of strain to form in the epitaxially-grown fins than would occur for non-constrained base structures.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: August 7, 2018
    Assignee: STMicroelectronics, Inc.
    Inventors: Pierre Morin, Nicolas Loubet
  • Patent number: 10038075
    Abstract: An improved transistor with channel epitaxial silicon and methods for fabrication thereof. In one aspect, a method for fabricating a transistor includes: forming a gate stack structure on an epitaxial silicon region, a width dimension of the epitaxial silicon region approximating a width dimension of the gate stack structure; encapsulating the epitaxial silicon region under the gate stack structure with sacrificial spacers formed on both sides of the gate stack structure and the epitaxial silicon region; forming a channel of the transistor having a width dimension that approximates that of the epitaxial silicon region and the gate stack structure, the epitaxial silicon region and the gate stack structure formed on the channel of the transistor; removing the sacrificial spacers; and growing a raised epitaxial source and drain from the silicon substrate, with portions of the raised epitaxial source and drain in contact with the epitaxial silicon region.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: July 31, 2018
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, STMICROELECTRONICS, INC.
    Inventors: Stephane Allegret-Maret, Kangguo Cheng, Bruce Doris, Prasanna Khare, Qing Liu, Nicolas Loubet
  • Patent number: 10038072
    Abstract: Incorporation of metallic quantum dots (e.g., silver bromide (AgBr) films) into the source and drain regions of a MOSFET can assist in controlling the transistor performance by tuning the threshold voltage. If the silver bromide film is rich in bromine atoms, anion quantum dots are deposited, and the AgBr energy gap is altered so as to increase Vt. If the silver bromide film is rich in silver atoms, cation quantum dots are deposited, and the AgBr energy gap is altered so as to decrease Vt. Atomic layer deposition (ALD) of neutral quantum dots of different sizes also varies Vt. Use of a mass spectrometer during film deposition can assist in varying the composition of the quantum dot film. The metallic quantum dots can be incorporated into ion-doped source and drain regions. Alternatively, the metallic quantum dots can be incorporated into epitaxially doped source and drain regions.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: July 31, 2018
    Assignee: STMicroelectronics, Inc.
    Inventor: John H. Zhang
  • Patent number: 10037922
    Abstract: Integrated circuits are disclosed in which the strain properties of adjacent pFETs and nFETs are independently adjustable. The pFETs include compressive-strained SiGe on a silicon substrate, while the nFETs include tensile-strained silicon on a strain-relaxed SiGe substrate. Adjacent n-type and p-type FinFETs are separated by electrically insulating regions formed by a damascene process. During formation of the insulating regions, the SiGe substrate supporting the n-type devices is permitted to relax elastically, thereby limiting defect formation in the crystal lattice of the SiGe substrate.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: July 31, 2018
    Assignee: STMICROELECTRONICS, INC.
    Inventors: Nicolas Loubet, Pierre Morin, Yann Mignot
  • Patent number: 10032794
    Abstract: A semiconductor device includes a plurality of gates formed upon a semiconductor substrate that includes a plurality of outer active areas (e.g. CMOS/PMOS areas, source/drain regions, etc.) and one or more inner active areas. An isolator is formed upon one or more inner gates associated with the one or more inner active areas. A contact bar electrically connects the outer active areas and/or outer gates and is formed upon the isolator. The isolator electrically insulates the contact bar from the one or more inner active areas and/or the one or more inner gates.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: July 24, 2018
    Assignees: International Business Machines Corporation, STMicroelectronics, Inc.
    Inventors: Wai-Kin Li, Chieh-Yu Lin, Yannick Daurelle
  • Patent number: 10032912
    Abstract: A modified silicon substrate having a substantially defect-free strain relaxed buffer layer of SiGe is suitable for use as a foundation on which to construct a high performance CMOS FinFET device. The substantially defect-free SiGe strain-relaxed buffer layer can be formed by making cuts in, or segmenting, a strained epitaxial film, causing edges of the film segments to experience an elastic strain relaxation. When the segments are small enough, the overall film is relaxed so that the film is substantially without dislocation defects. Once the substantially defect-free strain-relaxed buffer layer is formed, strained channel layers can be grown epitaxially from the relaxed SRB layer. The strained channel layers are then patterned to create fins for a FinFET device. In one embodiment, dual strained channel layers are formed—a tensilely strained layer for NFET devices, and a compressively strained layer for PFET devices.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: July 24, 2018
    Assignees: STMICROELECTRONICS, INC., GLOBALFOUNDRIES INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Pierre Morin, Kangguo Cheng, Jody Fronheiser, Xiuyu Cai, Juntao Li, Shogo Mochizuki, Ruilong Xie, Hong He, Nicolas Loubet
  • Patent number: 10034111
    Abstract: The present disclosure is directed to a gain control system that receives a signal and outputs a modulated signal. The signal modulation is based on a gain that is based on a detected distance between the gain control system and a user. The distance is detected with a ranging sensor which generates ranging data for a field of view, and then the gain control system analyzes the ranging data to identify the user, with a higher signal gain for the user at a greater distance and a lower signal gain for the user at a lesser distance.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: July 24, 2018
    Assignee: STMicroelectronics, Inc.
    Inventors: Dominique Paul Barbier, Xiaoyong Yang
  • Patent number: 10026830
    Abstract: A tunneling field effect transistor is formed from a fin of semiconductor material on a support substrate. The fin of semiconductor material includes a source region, a drain region and a channel region between the source region and drain region. A gate electrode straddles over the fin at the channel region. Sidewall spacers are provided on each side of the gate electrode. The source of the transistor is made from an epitaxial germanium content source region grown from the source region of the fin and doped with a first conductivity type. The drain of the transistor is made from an epitaxial silicon content drain region grown from the drain region of the fin and doped with a second conductivity type.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: July 17, 2018
    Assignee: STMicroelectronics, Inc.
    Inventors: Qing Liu, Salih Muhsin Celik
  • Patent number: 10026849
    Abstract: Processes and overturned thin film device structures generally include a metal gate having a concave shape defined by three faces. The processes generally include forming the overturned thin film device structures such that the channel self-aligns to the metal gate and the contacts can be self-aligned to the sacrificial material.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: July 17, 2018
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, STMICROELECTRONICS, INC.
    Inventors: Lawrence A. Clevenger, Carl J. Radens, Yiheng Xu, John H. Zhang
  • Patent number: 10015449
    Abstract: Embodiments of the present disclosure include a system and a method of accessing a system. An embodiment is a system including an imaging system including a controller and a first camera, the controller having a communication connection configured to transmit or receive content or control signals, and a mobile device including a second camera, the mobile device having a communication interface configured to transmit or receive content or control signals with the controller, the controller being configured to compare images from the first and second cameras to allow access to the controller from the mobile device.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: July 3, 2018
    Assignee: STMicroelectronics, Inc.
    Inventors: Oleg Logvinov, James D. Allen
  • Patent number: 10008472
    Abstract: A method is for making a semiconductor device. The method may include providing a lead frame having a recess, forming a sacrificial material in the recess of the lead frame, and mounting an IC on the lead frame. The method may include encapsulating the IC and the lead frame, removing portions of the lead frame to define lead frame contacts for the IC, and removing the sacrificial material to define for each lead frame contact a solder anchoring tab extending outwardly at a lower region and defining a sidewall recess between opposing portions of the solder anchoring tab and the encapsulation material.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: June 26, 2018
    Assignee: STMICROELECTRONICS, INC.
    Inventor: Jefferson Talledo
  • Patent number: 10002938
    Abstract: Energy bands of a thin film containing molecular clusters are tuned by controlling the size and the charge of the clusters during thin film deposition. Using atomic layer deposition, an ionic cluster film is formed in the gate region of a nanometer-scale transistor to adjust the threshold voltage, and a neutral cluster film is formed in the source and drain regions to adjust contact resistance. A work function semiconductor material such as a silver bromide or a lanthanum oxide is deposited so as to include clusters of different sizes such as dimers, trimers, and tetramers, formed from isolated monomers. A type of Atomic Layer Deposition system is used to deposit on semiconductor wafers molecular clusters to form thin film junctions having selected energy gaps. A beam of ions contains different ionic clusters which are then selected for deposition by passing the beam through a filter in which different apertures select clusters based on size and orientation.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: June 19, 2018
    Assignee: STMICROELECTRONICS, INC.
    Inventor: John H. Zhang
  • Publication number: 20180166469
    Abstract: A transistor includes an active region supported by a substrate and having a source region, a channel region and a drain region. A gate stack extends over the channel region and a first sidewall surrounds the gate stack. A raised source region and a raised drain region are provided over the source and drain regions, respectively, of the active region adjacent the first sidewall. A second sidewall peripherally surrounds each of the raised source region and raised drain region. The second sidewall extends above a top surface of the raised source region and raised drain region to define regions laterally delimited by the first and second sidewalls. A conductive material fills the regions to form a source contact and a drain contact to the raised source region and raised drain region, respectively.
    Type: Application
    Filed: February 7, 2018
    Publication date: June 14, 2018
    Applicant: STMicroelectronics, Inc.
    Inventor: John Hongguang Zhang
  • Publication number: 20180167016
    Abstract: A system in package encloses a sensor and motor driver circuit. In an implementation, the sensor is an integrated circuit micro-electro-mechanical-systems (MEMS) sensor and the driver circuit is a motor driver circuit. Non-motor winding data information is sensed by the MEMS sensor and processed for the purpose of characterizing known fault patterns for motors; characterizing normal operation of the motor; and evaluating continued operation of the motor to detect abnormal motor behavior and instances of motor fault. The motor is driven using PWM control and the information output by the MEMS sensor is sampled at sampling times having a fixed timing relationship relative to the PWM control signals.
    Type: Application
    Filed: February 9, 2017
    Publication date: June 14, 2018
    Applicant: STMicroelectronics, Inc.
    Inventors: Cheng Peng, Robert Krysiak
  • Patent number: 9997463
    Abstract: A modular interconnect structure facilitates building complex, yet compact, integrated circuits from vertical GAA FETs. The modular interconnect structure includes annular metal contacts to the transistor terminals, sectors of stacked discs extending radially outward from the vertical nanowires, and vias in the form of rods. Extension tabs mounted onto the radial sector interconnects permit signals to fan out from each transistor terminal. Adjacent interconnects are linked by linear segments. Unlike conventional integrated circuits, the modular interconnects as described herein are formed at the same time as the transistors. Vertical GAA NAND and NOR gates provide building blocks for creating all types of logic gates to carry out any desired Boolean logic function. Stacked vertical GAA FETs are made possible by the modular interconnect structure. The modular interconnect structure permits a variety of specialized vertical GAA devices to be integrated on a silicon substrate using standard CMOS processes.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: June 12, 2018
    Assignee: STMicroelectronics, Inc.
    Inventor: John H. Zhang
  • Patent number: 9991996
    Abstract: An access point (AP) contends for a medium during a contention period in order to obtain exclusive control of the medium for a certain time period that may include one or more transmission opportunities. The AP and client stations (STAs) communicate during the time period using orthogonal frequency division multiple access (OFDMA) techniques with scheduled use (i.e., allocation) of sub-channels of the medium. The AP controls this scheduling for down-link and up-link communications by sending control signaling to inform the STAs of the resource allocation schedule which specifies STAs involved in the OFDMA communications along with the sub-channel identification bandwidth allocated to each STA. The control signaling may be a combination of physical layer (PHY) and medium access control layer (MAC) communicated information.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: June 5, 2018
    Assignee: STMicroelectronics, Inc.
    Inventors: Liwen Chu, George A. Vlantis
  • Patent number: 9991351
    Abstract: A method of making a semiconductor device includes forming a fin mask layer on a semiconductor layer, forming a dummy gate over the fin mask layer, and forming source and drain regions on opposite sides of the dummy gate. The dummy gate is removed and the underlying fin mask layer is used to define a plurality of fins in the semiconductor layer. A gate is formed over the plurality of fins.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: June 5, 2018
    Assignee: STMicroelectronics, Inc.
    Inventors: Nicolas Loubet, Prasanna Khare
  • Patent number: 9983353
    Abstract: A strip of sacrificial semiconductor material is formed on top of a non-sacrificial semiconductor material substrate layer. A conformal layer of the non-sacrificial semiconductor material is epitaxially grown to cover the substrate layer and the strip of sacrificial semiconductor material. An etch is performed to selectively remove the strip of sacrificial semiconductor material and leave a hollow channel surrounded by the conformal layer and the substrate layer. Using an anneal, the conformal layer and the substrate layer are reflowed to produce an optical waveguide structure including the hollow channel.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: May 29, 2018
    Assignee: STMicroelectronics, Inc.
    Inventor: Qing Liu
  • Patent number: 9979710
    Abstract: A wireless local area network system establishes a PASSPOINT™ connection between a mobile station and a hotspot using an enhanced single SSID method or an enhanced dual SSID method. In the dual SSID method, an access point associates and authenticates a mobile device to a secondary SSID of the access point during enrollment and provisioning. After enrollment, the access point authenticates the mobile station to a primary SSID of the access point using the credential that the mobile station received from an online sign-up (“OSU”) server in connection with the secondary SSID. In the single SSID method, an access point performs two levels of authentication. During authentication, communications are limited to an 802.1x controlled port running on the mobile station and access point. After a first authentication, communications between the OSU server and the mobile station are unblocked. After the second authentication, all traffic from the mobile station is unblocked.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: May 22, 2018
    Assignee: STMICROELECTRONICS, INC.
    Inventors: Liwen Chu, George A. Vlantis
  • Patent number: 9980219
    Abstract: A IEEE 802.11 Wireless Local Area Network (WLAN) system of an access point (AP) and one or more stations (STAs) reduces power consumption and increases battery life of power efficient low power STAs by decreasing the amount of time that a power efficient low power STA remains in an awake state. After indicating power efficient low power operation during association with an AP supporting such operation, the power efficient low power STA may enter the doze state from the time that the power efficient low power STA sends a PS-Poll until the power efficient low power STA receives the buffered DATA frame from the AP. While implementing the power efficient PS-Poll method, the AP can send the buffered DATA frame to the STA SIFS after the AP sends an ACK to the received PS-Poll from the STA.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: May 22, 2018
    Assignee: STMicroelectronics, Inc.
    Inventors: Liwen Chu, George A. Vlantis